www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Logarithmen...
Logarithmen... < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmen...: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 21:47 Di 29.11.2005
Autor: Bastiane

Hallo!

Und schon wieder eine Frage...

der informatische Logarithmus ist folgendermaßen definiert:

[mm] \log(n)=\min\{m|m\in\IN_0, 2^m\ge n\} [/mm]

also quasi der normale Zweierlogarithmus aufgerundet...

Nun wird eine Funktion [mm] \log^{\star}:\IN\to\IN [/mm] definiert durch

[mm] \log^{\star}(n)=\min\{m\in\IN|\underbrace{\log...\log}_{m \mbox{-mal}}(n)=1\}. [/mm]

Erstmal eine Verständnisfrage:

Was ist mit [mm] \underbrace{\log...\log}_{m \mbox{-mal}}(n) [/mm] gemeint? Ich verstehe das als [mm] \log(\log(\log(...(n)))) [/mm] oder ist gemeint [mm] \log(n)*\log(n)*...*\log(n)? [/mm]

Und dann frage ich mich, wie man auf folgendes kommt:

[mm] \log^{\star}(n)=\min\{m\in\IN|2^{2^{...^{2}}}|m\ge n\} [/mm]

Wahrscheinlich ist das keine große Sache, aber ich sehe es nicht so direkt und würde es gerne erklären können. :-) Vielleicht kann mir jemand helfen?

Viele Grüße
Bastiane
[cap]


        
Bezug
Logarithmen...: Antwort
Status: (Antwort) fertig Status 
Datum: 23:10 Di 29.11.2005
Autor: SEcki

Hallo,

> Was ist mit [mm]\underbrace{\log...\log}_{m \mbox{-mal}}(n)[/mm]
> gemeint? Ich verstehe das als [mm]\log(\log(\log(...(n))))[/mm] oder
> ist gemeint [mm]\log(n)*\log(n)*...*\log(n)?[/mm]

Das zweite. Wie man da sehr schnell drauf kommt? Das zweite ist bei hinreichend großem m imemr größer als 1 ...

> [mm]\log^{\star}(n)=\min\{m\in\IN|2^{2^{...^{2}}}|m\ge n\}[/mm]

Was da wohl stehen soll: der Turm hat die Länge m, also besteht aus m-mal 2er potenziert? Geht wohl quasi mit Induktion. Ich hab nichts ausformuliertes, aber folgende Betrachtung für einen spezialfall, den man dann wohl mit Induktion allgemien ausdhenen kann: [m]\log(n)=m[/m]. Falls m jetzt größer als 1 ist, erhalte ich [m]m'=log(m)[/m]. Jetzt ist [m]2^{m'}\ge m[/m], also [m]2^{(2^{m'})}\ge 2^m\ge n[/m]. Jetzt muss man sich wohl überlegen: kann ich ein kleineres [m]m'[m] nehmen, für dass [m]2^{(2^{m'})}\ge n[/m] gilt?Nehmen wir ein kleineres [m]m''[/m], also [m]2^{m''}< m[/m], also [m]2^{(2^{m''})} < 2^m < n[/m]. Ja, hmm, das sieht doch gut aus mit Induktion bzw endlicher Rekursion bzw. endlicher Iteration. :-)

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]