www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Log-likelihoodfunktion
Log-likelihoodfunktion < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Log-likelihoodfunktion: Ableitung
Status: (Frage) beantwortet Status 
Datum: 17:38 Di 10.02.2009
Autor: Biologe249

Aufgabe
Wir m¨ochten die Spielst¨arke zweier Tennisspieler A und B vergleichen und lassen
sie 5 mal jeweils 3 S¨atze gegeneinander spielen (die 3 S¨atze werden immer ausgespielt, auch
wenn ein Spieler die 2 ersten S¨atze gewinnt). Als zu Grunde liegendes statistisches Experiment
verwenden wir {B(3, p)|p 2 [0, 1]} und eine zugeh¨orige Stichprobe X := (X1, . . . ,X5). Berechnen
Sie den Maximum-Likelihood-Sch¨atzer f¨ur den Parameter p.
Hinweis: Maximieren Sie die Log-Likelihood-Funktion in p. Summanden dieser Funktion, die
nicht von Parameter p abh¨angen, spielen bei der Maximierung in p keine Rolle, man darf diese
also weglassen.
Bemerkung: Der Parameter p ist in diesem Modell die Wahrscheinlichkeit, dass Spieler A einen
Satz gegen Spieler B gewinnt. Wir nehmen an, dass die Ausg¨ange der verschiedenen S¨atze
unabh¨angig voneinander sind und die Gewinnwahrscheinlichkeit f¨ur jeden Satz gleich ist.

HAllo Leute,

ich habe ein Problem bei der Ableitung von meiner Log-Likelihoodfunktion:

log(L(p)) = [mm] \summe_{i=1}^{5}*[log\vektor{3 \\ ki}]+\summe_{i=1}^{5}ki*log(p)+(15-\summe_{i=1}^{5}ki)*log(1-p) [/mm]

Bei der Ableitung fliegt ja der Teil ohne P raus, d.h. der interessiert mich nicht weiter - aber nach meinem Tutor soll die Ableitung folgendermaßen sein:

log(L´(p)) = [mm] (\summe_{i=1}^{5}ki)/p+ ((15-\summe_{i=1}^{5}ki)/1-p)*(-1) [/mm]

Meine Frage ist nun WARUM wird der 2. Teil des Terms nochmal mit (-1) multipliziert???? Ich habe beim Versuch die Aufgabe selbst zu lösen dasselbe nur ohne die *(-1).... Trotzdem sehe ich ein das das Ergebnis, welches er uns gegeben hat vermutlich richtig ist, vor allem da es sich auf diese weise wunderbar nach p auflösen lässt....

Hoffe ihr könnt mir weiterhelfen und mir zeigen was ich übersehe (oder falsch mache)!!

Danke im vorraus..

Ach ja und..:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Log-likelihoodfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 Di 10.02.2009
Autor: luis52

Moin Biologe249,

[willkommenmr]

[mm] $[\log(1-p)]'=-\frac{1}{1-p}$. [/mm]

Vergiss die *innere* Ableitung nicht.

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]