www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Log-Funktion
Log-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Log-Funktion: Lösungsweg vllt. fehlerhaft?
Status: (Frage) beantwortet Status 
Datum: 16:20 So 19.11.2006
Autor: Blaub33r3

Aufgabe
Kontrolliert bitte meinen Lösungweg der Aufgabe:

[mm] x^3*ln(x^3)=0 [/mm]
[mm] e^{3x^3*ln(x)}=1 [/mm]
[mm] 3x^4=1 [/mm]
[mm] x=4*wurzel{bruch_{1}{3}} [/mm]

Hi Leute!
Naja abgesehn davon das ich auch so argumentieren kann, das produkt is null wenn einer der faktoren null wäre...
dann musste x1=0;x2=1
aber naja ich möchte das rechnerisch auch sehn, und naja finde komisch das jetz sowas bei mir raus kommt!

lg b33r3






Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Log-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:38 So 19.11.2006
Autor: Event_Horizon

Also, du hast da einen Fehler gemacht, und zwar gilt:

[mm] a^{b*c}=\left(a^b\right)^c [/mm]

Demnach klappt das mit der Umformung nicht so recht.


Ansonsten kannst du diese Gleichung NICHT nach x aufösen!


Allerdings ist das, was du beschreibst, exakt der richtige Lösungsweg! Einer der Faktoren muß null sein, also x=1 oder x=0.

Bezug
                
Bezug
Log-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:43 So 19.11.2006
Autor: Blaub33r3

okay thx erstmal!


> [mm]a^{b*c}=\left(a^b\right)^c[/mm]
>  
> Demnach klappt das mit der Umformung nicht so recht.

dazu ne frage: "Wieso gilt das was du sags, in diesem Term nicht"?

lg b33r3

Bezug
                        
Bezug
Log-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:50 So 19.11.2006
Autor: Event_Horizon

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

nun, das ergibt doch:

$e^{3x^3*ln(x)}=\left(e^{(3x^3)}\right)^\ln(x)$

oder

$e^{3x^3*ln(x)}=\left(e^{\ln(x)}\right)^{(3x^3)}}=x^{(3x^3)}$

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]