Lösungsraum von y'=Ay < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:21 So 15.07.2007 | Autor: | miamias |
Aufgabe | Berechne Basis des Lösungsraumes von y'=Ay, wobei A = [mm] \pmat{ 1 & 0 & 1 \\ 0 & 1 &-1 \\ -1 & -1 & -1 } \in M_{3}(\IC) [/mm] |
Also es gilt doch, dass die Spalten von [mm] e^{tA} [/mm] eben eine Basis bilden.
es gilt auch: [mm] e^{A} =e^{Q^{-1}JQ}=Q^{-1}e^{J}Q, [/mm] wobei J Jordanmatrix zu A. J= [mm] \pmat{ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 }
[/mm]
dann: [mm] e^{tA} [/mm] = [mm] Q^{-1} \pmat{ e^{\pmat{ t & t \\ 0 & t } & 0 \\ 0 & e^{-t}}}Q.
[/mm]
Wie komme ich jetzt weiter?
mfG
miamias
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:10 So 15.07.2007 | Autor: | miamias |
Erstmal Danke für deine Antwort. Das Problem ist nur, dass wir das mit der Methode aus der Vorlesung machen sollen ( ich habe gerade gesehen, dass ich das vergessen habe explizit zu erwähnen, sorry). DenAnsatz der Methode hab ich ja schon ich bin nur gerade an einen Punkt angelangt wo ich nicht weiss wie man weiter rechnen kann. Des weiteren ist mir dein Lösungsvariante völlig unbekannt, also, Fundamentalsystem haben wir noch nicht behandelt
mfg
miamias
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:24 So 15.07.2007 | Autor: | felixf |
Hallo
> Berechne Basis des Lösungsraumes von y'=Ay, wobei A =
> [mm]\pmat{ 1 & 0 & 1 \\ 0 & 1 &-1 \\ -1 & -1 & -1 } \in M_{3}(\IC)[/mm]
>
> Also es gilt doch, dass die Spalten von [mm]e^{tA}[/mm] eben eine
> Basis bilden.
> es gilt auch: [mm]e^{A} =e^{Q^{-1}JQ}=Q^{-1}e^{J}Q,[/mm] wobei J
> Jordanmatrix zu A. J= [mm]\pmat{ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 }[/mm]
>
> dann: [mm]e^{tA}[/mm] = [mm]Q^{-1} \pmat{ e^{\pmat{ t & t \\ 0 & t } & 0 \\ 0 & e^{-t}}}Q.[/mm]
>
> Wie komme ich jetzt weiter?
Sagt dir Taylor-Entwicklung im nilpotenten Teil etwas?
Wenn nicht, mach ich das mal von Hand: es ist ja [mm] $\pmat{ t & t \\ 0 & t } [/mm] = D + N$ mit $D = [mm] \pmat{ t & 0 \\ 0 & t }$ [/mm] und $N = [mm] \pmat{ 0 & t \\ 0 & 0 }$. [/mm] Es gilt $D N = N D$ und [mm] $N^2 [/mm] = 0$.
Wegen $D N = N D$ ist jetzt [mm] $e^{D + N} [/mm] = [mm] e^D e^N$. [/mm] Das [mm] $e^D$ [/mm] ist jetzt einfach, das ist [mm] $\pmat{e^t & 0 \\ 0 & e^t}$. [/mm] Aber was ist [mm] $e^N$? [/mm] Das ist auch einfach, da [mm] $N^2 [/mm] = 0$ ist: [mm] $e^N [/mm] = [mm] \sum_{k=0}^\infty \frac{N^k}{k!} [/mm] = [mm] N^0 [/mm] + [mm] \frac{N^1}{1} [/mm] + [mm] N^2 \sum_{k=2}^\infty \frac{N^{k-2}}{k!} [/mm] = [mm] E_2 [/mm] + N = [mm] \pmat{1 & t \\ 0 & 1}$.
[/mm]
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:46 So 15.07.2007 | Autor: | miamias |
Ja vielen Dank. konnte jetzt die Aufgabe lösen.
mfG
miamias
|
|
|
|