www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Lösungsraum
Lösungsraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungsraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 So 16.12.2007
Autor: jokerose

Aufgabe
Sei W [mm] \subset \IR^{4} [/mm] der Lösungsraum des Systems linearer Gleichungen AX=0 für
A= [mm] \pmat{ 2 & 1 & 2 & 3 \\ 1 & 1 & 3 & 0 } [/mm]
Man findes eine Basis für W.

Wie findet man den Lösungsraum heraus?
Die Basis dann herauszufinden ist mir glaube ich klar. Aber einfach der Lösungsraum bereite mir Mühe.
Muss ich das Gleichungssystem AX=0 einfach auflösen? Und dann mit den x-Werten den Lösungsraum aufspannen? Oder wie funktioniert dies genau?

        
Bezug
Lösungsraum: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 So 16.12.2007
Autor: Kroni

Hi,

du suchst also den Nullraum deiner Matrix A. Dafür, wie du richtig sagtest, Ax=0 lösen. Dann bekommst du ja meist eine Lösungsmenge, in der linearkombinationen von Vektoren stehen. Diese spannen dann den Nullraum, also den Lösungsraum von Ax=0, also W auf. Da deine Vektoren dann schon linear unabhängig sind (sollten sie normal eigentlich), hast du dann direkt 'ne Basis für N(A) gefunden.

LG

Kroni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]