www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Lösungsmenge einer Ungleichung
Lösungsmenge einer Ungleichung < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungsmenge einer Ungleichung: Idee
Status: (Frage) beantwortet Status 
Datum: 15:34 Fr 12.07.2013
Autor: Sewina_Abhorsen

Aufgabe
Für welche komplexen Zahlen z [mm] \in \IC [/mm] gilt

|z+i| < |z-i| ?

(Charakterisieren Sie die Lösungsmenge durch Real- und Imaginärteil.)

Ich rechne hier gerade eine Altklausur durch, für die ich die Musterlösung nicht habe.

Bei dieser Aufgabe hakt es etwas. Vllt kann mir jemand einen Tipp geben, wie man sie löst.

Mein bisheriger Ansatz ist, z als z=a+bi zu schreiben und so komme ich zur Ungleichung

|z+i| < |z-i|
[mm] \Rightarrow [/mm] |a+bi+i| < |a+bi-i|
[mm] \Rightarrow [/mm] |a+(b+1)i| < |a+(b-1)i|

Nun weiß ich aber nicht weiter.

Danke schon mal für die Hilfe,
Sewina

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lösungsmenge einer Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Fr 12.07.2013
Autor: schachuzipus

Hallo Sewina,

> Für welche komplexen Zahlen z [mm]\in \IC[/mm] gilt

>

> |z+i| < |z-i| ?

>

> (Charakterisieren Sie die Lösungsmenge durch Real- und
> Imaginärteil.)
> Ich rechne hier gerade eine Altklausur durch, für die ich
> die Musterlösung nicht habe.

>

> Bei dieser Aufgabe hakt es etwas. Vllt kann mir jemand
> einen Tipp geben, wie man sie löst.

>

> Mein bisheriger Ansatz ist, z als z=a+bi zu schreiben

Ok, das ist ein probates Mittel

> und
> so komme ich zur Ungleichung

>

> |z+i| < |z-i|
> [mm]\Rightarrow[/mm] |a+bi+i| < |a+bi-i|
> [mm]\Rightarrow[/mm] |a+(b+1)i| < |a+(b-1)i| [ok]

>

> Nun weiß ich aber nicht weiter.

Na, wie ist denn der Betrag einer komplexen Zahl [mm]z=x+iy[/mm] definiert?

[mm]|z|=|x+iy|=\sqrt{x^2+y^2}[/mm]

Also [mm]|a+(b+1)i|=\sqrt{a^2+(b+1)^2}[/mm] ...

Genügt das, um weiterzukommen?

>

> Danke schon mal für die Hilfe,
> Sewina

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Liebe Grüße

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]