www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Lösungsmenge
Lösungsmenge < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungsmenge: Frage?
Status: (Frage) beantwortet Status 
Datum: 19:23 So 26.01.2014
Autor: gotoxy86

Ich möchte gerne die Lösungsmenge der folgenden Funktion so kurz und knapp wie möglich ausdrücken:

[mm] f(x)=4\sin^2\left(x\right)\left[\cos^2\left(x\right)-\br{1}{4}\right] [/mm]

[mm] \IL=\IR\left\{k\pi;k\pi+\br{\pi}{3}\right\}:k\in\IZ [/mm]

Ist das richtig? Oder Wischi-Waschi?

        
Bezug
Lösungsmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 So 26.01.2014
Autor: DieAcht

Hallo,


> Ich möchte gerne die Lösungsmenge der folgenden Funktion
> so kurz und knapp wie möglich ausdrücken:
>  
> [mm]f(x)=4\sin^2\left(x\right)\left[\cos^2\left(x\right)-\br{1}{4}\right][/mm]

Für eine Lösungmenge brauchst du eine Gleichung. ;-)

> [mm]\IL=\IR\left\{k\pi;k\pi+\br{\pi}{3}\right\}:k\in\IZ[/mm]
>  
> Ist das richtig? Oder Wischi-Waschi?

Das ist nicht "Wischi-Waschi", das ist falsch!

Ich habe die Lösungsmenge nicht nachgerechnet,
aber deine Darstellung ist falsch.

Was soll denn das [mm] \IR [/mm] vor der Menge und der Doppelpunkt nach der Menge bedeuten ?

Darüber hinaus hast du sowas wie ein Tupel in deiner Lösungsmenge?

[mm] f:\IR\to\IR. [/mm] Wie kommst du auf ein Tupel?

Dein Lösungmenge müsste wie folgt aussehen:

      [mm] \IL=\{k\pi+\frac{\pi}{3},k\in\IZ\} [/mm]

Achtung: Das ist nicht kontrolliert!


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]