www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Lösung von Gleichungen
Lösung von Gleichungen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung von Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:48 Mo 24.10.2005
Autor: Soonic

Kann mir jemand folgende Gleichung lösung?

x + Wurzel(x+2) = 4


Habe mir folgendes gedacht. Mit PQ Formel:

x + Wurzel(2x) = 4 /-Wurzel(x+2)

x = 4 - Wurzel(2x) / ()²

x² = 16 -2x / - x²

-x² - 2x + 16 / *(-1)

x² + 2x - 16 = 0

Und dann PQ Formel:

Dann bekomme ich raus:


x1,2 = -1 +- Wurzel(1+16) ?????????????????????

Das für x = 2 raus kommt, ist klar, aber wie weise ich das nach?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lösung von Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 Mo 24.10.2005
Autor: rachel_hannah


> Kann mir jemand folgende Gleichung lösung?
>  
> x + Wurzel(x+2) = 4
>  
>
> Habe mir folgendes gedacht. Mit PQ Formel:
>  
> x + Wurzel(2x) = 4 /-Wurzel(x+2)
>  
> x = 4 - Wurzel(2x) / ()²
>  
> x² = 16 -2x / - x²
>  
> -x² - 2x + 16 / *(-1)
>  
> x² + 2x - 16 = 0
>  
> Und dann PQ Formel:
>  
> Dann bekomme ich raus:
>  
>
> x1,2 = -1 +- Wurzel(1+16) ?????????????????????
>  
> Das für x = 2 raus kommt, ist klar, aber wie weise ich das
> nach?
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hi,
Mach doch aus x+[mm]\wurzel{2+x}[/mm]=4 |-x
[mm]\wurzel{2+x}[/mm]=4-x |()²
2+x=16-8x+x² |-2x
0=x²-9x+14 |pq-Formel
x_(1,2)=9/2 [mm]\pm[/mm] [mm]\wurzel{(9/2)²-14}[/mm]
[mm] x_1=4,5-2,5=2 [/mm]
[mm] x_2=4,5+2,5=7 [/mm]
In der Kontrolle funktioniert [mm] x_2 [/mm] aber nur, wenn du aus 4-7=[mm]\wurzel{9}[/mm] machst, also nur die negative Wurzel nimmst.  Weiß auch nicht so genau, warum das so ist.
Im übrigen hast du aus (2+x) =2x gemacht, hab jetzt mal mit 2+x gerechnet, funktioniert aber mit 2x genauso, nur dass deine Ergebnisse 2 und 8 wären.
Gruß,
Rachel


Bezug
                
Bezug
Lösung von Gleichungen: Keine Äquivalenzumformung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:20 Di 25.10.2005
Autor: Loddar

Guten Morgen Rachel!


> In der Kontrolle funktioniert [mm]x_2[/mm] aber nur, wenn du aus
> 4-7=[mm]\wurzel{9}[/mm] machst, also nur die negative Wurzel nimmst.
> Weiß auch nicht so genau, warum das so ist.

Das liegt daran, dass das Quadrieren einer Gleichung keine Äquivalenzumformung ist.

Daher ist bei diesem Schritt im Anschluss immer die Probe durchzuführen. Und hier hast Du ja genau festgestellt, dass nur eine der beiden vermeintlichen Lösungen die Ausgangsgleichung erfüllt.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]