Lösung von DGL fortsetzen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 16:59 Do 14.06.2007 | Autor: | mathman |
Aufgabe | Sei f aus C (JxG . [mm] R^{n}) [/mm] und phi : [a, b) nach [mm] R^{n} [/mm] eine Lösung
von y' = f(x,y) mit [a,b] [mm] \subset [/mm] J und (phi([a,b)))(mit nem strich oben) [mm] \subset [/mm] G
beschränkt.
Zeige, dass phi stetig in den Randpunkt b fortsetzbar ist
und diese Fortsetzung noch immer Lösung der Diferentialgleichung ist.
Hinweis:
Ist [mm] (x_k)\subset [/mm] [a,b) eine Folge mit lim [mm] x_k [/mm] = b, so ist
[mm] (phi(x_k)) [/mm] eine Cauchyfolge in [mm] R^n.
[/mm]
|
Ich komme schon seit Tagen nicht drauf ,wie ich den hinweis zeigen soll und was aus dem hinweis folgt.
Bitte um Hilfe.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Moin, erstmal ein paar warme Worte: 1) Das Zeitlimit war vielleicht etwas knapp und 2) kann man die Vorschau nutzen, um festzustellen ob man noch etwas an der Darstellung verbessern kann.
OK - jetzt zum Eigentlichen. Wie zeigst du, dass es eine C.-Folge ist? Als Lösung der DGL ist [mm]\phi[/mm] diff.bar also stetig. Versuch das auszunutzen. Was bringt's? In [mm]\IR^n[/mm] konvergiert jede C.-Folge. Also kann man den Grenzwert der Folge der Funktionswerte nehmen, um damit die Funktion auf den Rand des Intervals fortzusetzen. Jetzt muss man noch zeigen, dass dabei die DGL erfüllt ist. Da hilft es, zu bedenken, dass [mm]\phi[/mm] ja durch Integration über f entsteht...
|
|
|
|