www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Lösung von Bruch
Lösung von Bruch < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung von Bruch: Lösungsweg
Status: (Frage) beantwortet Status 
Datum: 10:35 Fr 21.08.2009
Autor: mylo3000

Aufgabe
[mm] (a^2/b+b^2/a)/(1/a+1/b) [/mm]

Guten Tag Zusammen

Die Lösung ist: [mm] a^2-ba+b^2 [/mm]

Wie komme ich auf diese Lösung?

Ich komme immer auf: [mm] (a^3+b^3)/ab [/mm]

Vielen Dank.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lösung von Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 10:55 Fr 21.08.2009
Autor: XPatrickX

Hallo!

> [mm](a^2/b+b^2/a)/(1/a+1/b)[/mm]
>  Guten Tag Zusammen
>  
> Die Lösung ist: [mm]a^2-ba+b^2[/mm]
>  
> Wie komme ich auf diese Lösung?
>  
> Ich komme immer auf: [mm](a^3+b^3)/ab[/mm]


Ich komme auf [mm] (a^3+b^3)/(a\red{+}b) [/mm]
Dies ist identisch zu deiner Musterlösung.


>  
> Vielen Dank.
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruß Patrick

Bezug
                
Bezug
Lösung von Bruch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:11 Fr 21.08.2009
Autor: mylo3000

Super. Ich auch. Dann ist die Lösung im Heft falsch.

LG mylo3000

Bezug
                        
Bezug
Lösung von Bruch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:15 Fr 21.08.2009
Autor: XPatrickX

Vielleicht habe ich mich nicht deutlich genug ausgedrückt, es gilt:


[mm] \frac{a^3+b^3}{a+b}=a^2-ab+b^2 [/mm]


Durch Multiplikation mit a+b kann man dies leicht überprüfen.





Bezug
                                
Bezug
Lösung von Bruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:27 Fr 21.08.2009
Autor: mylo3000

Die komplexeren schaffe ich. Aber bei dieser Aufgabe komme ich nicht auf diese Lösung.

Kannst Du mir kurz aufzeigen wie du diese löst?

Vielen Dank für alles :)

Bezug
                                        
Bezug
Lösung von Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 Fr 21.08.2009
Autor: M.Rex

Hallo

Die Umformung von

[mm] \bruch{\bruch{a^{2}}{b}+\bruch{b^{2}}{a}}{\bruch{1}{a}+\bruch{1}{b}} [/mm]

zu [mm] \bruch{a^{3}+b^{3}}{a+b} [/mm]

hast du ja hinbekommen.

Und jetzt mache mal die Polynomdivision

[mm] (a^{3}+b^{3}):(a+b), [/mm] dann kommst du auf [mm] a^{2}-ab+b^{2} [/mm]

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]