www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Nichtlineare Gleichungen" - Lösung nichtlinearer Gleichung
Lösung nichtlinearer Gleichung < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung nichtlinearer Gleichung: Exakte Lösung
Status: (Frage) beantwortet Status 
Datum: 15:20 Sa 28.02.2009
Autor: LASA

Aufgabe
[mm] x^2+y^2=2 [/mm]
x+y=0

Hallo zusammen!!!

Die gestellte Aufgabe haben wir im numerikuntericht aufbekommen!!!wir sollen die Aufgabe mittels Newton oder Jacobi Verfahren lösen. Hab sie auch schon allein versucht aber ich hab Schwierigkeiten die Exakte Lösung der nichlinearen Gleichungen zu finden!!! Vieleicht kann mir da jemand helfen zumindest wie ich die nl-Gleichungen exakt löse.

danke im Vorraus

LASA

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




        
Bezug
Lösung nichtlinearer Gleichung: einsetzen
Status: (Antwort) fertig Status 
Datum: 15:25 Sa 28.02.2009
Autor: Loddar

Hallo LASA,

[willkommenmr] !!

Löse die 2. Gleichung z.B. nach $y \ = \ -x_$ auf und setze in die 1. Gleichung ein.


Gruß
Loddar


Bezug
                
Bezug
Lösung nichtlinearer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:57 Sa 28.02.2009
Autor: LASA

Danke Loddar für die schnelle Antwort!!!
Warscheinlich bin ich wiedermal zu doof aber irgendwie hab ich da nen Brett vorm Kopf!!! Aber wenn ich für y aus der ersten Gleichung -x einsetze, dann hab ich doch [mm] x^2-x^2=2 [/mm] !! wie mach ich denn dann weiter ??? Irgendwie bekomm ich da nur Müll raus

Bezug
                        
Bezug
Lösung nichtlinearer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Sa 28.02.2009
Autor: MathePower

Hallo LASA,

> Danke Loddar für die schnelle Antwort!!!
>   Warscheinlich bin ich wiedermal zu doof aber irgendwie
> hab ich da nen Brett vorm Kopf!!! Aber wenn ich für y aus
> der ersten Gleichung -x einsetze, dann hab ich doch
> [mm]x^2-x^2=2[/mm] !! wie mach ich denn dann weiter ??? Irgendwie
> bekomm ich da nur Müll raus


Loddar hat ja geschrieben, daß  

[mm]x+y=0 \gdw y=-x[/mm]

Setze das nun in die Gleichung

[mm]x^{2}+y^{2}=2[/mm]

ein, dann ergibt sich

[mm]x^{2}+\left(-x\right)^{2}=2[/mm]

Beachte hier, daß [mm]\left(-x\right)^{2}=x^{2}[/mm] ist.


Gruß
MathePower

Bezug
                                
Bezug
Lösung nichtlinearer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:48 Sa 28.02.2009
Autor: LASA

Aufgabe
[mm] x^2+y^2=2 [/mm]    
x+y=0

[mm] startvektor=\pmat{ 0 \\ 1 } [/mm]

[mm] x1=\vektor{x \\ y}-\bruch{1}{2x-2y}*\pmat{ 1 & -2y \\ -1 & 2x }*\pmat{ x^2+y^2-2 \\ x+y}=\bruch{1}{2x-2y}*\pmat{ x^2+y^2+2 \\ -x^2-y^2-2} [/mm]


thx super forum hier!!!

mit dem lösen der nlg komm ich nun klar !!! Aber da hat man das erste geschnallt und dann kommt der nächste klopper!!! Naja was ich nicht verstehe was mein Prof da am Ende gemacht hat!! Vieleicht hat ja einer den Durchblick und kann es mir verraten!!!Ich verstehe nicht wie er auf den kram hinterm Gleichheitszeichen gekommen ist!!!

Bezug
                                        
Bezug
Lösung nichtlinearer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 Sa 28.02.2009
Autor: abakus


> [mm]x^2+y^2=2[/mm]    
> x+y=0
>  
> [mm]startvektor=\pmat{ 0 \\ 1 }[/mm]
>  
> [mm]x1=\vektor{x \\ y}-\bruch{1}{2x-2y}*\pmat{ 1 & -2y \\ -1 & 2x }*\pmat{ x^2+y^2-2 \\ x+y}=\bruch{1}{2x-2y}*\pmat{ x^2+y^2+2 \\ -x^2-y^2-2}[/mm]
>  
>
> thx super forum hier!!!
>  
> mit dem lösen der nlg komm ich nun klar !!! Aber da hat man
> das erste geschnallt und dann kommt der nächste klopper!!!
> Naja was ich nicht verstehe was mein Prof da am Ende
> gemacht hat!! Vieleicht hat ja einer den Durchblick und
> kann es mir verraten!!!Ich verstehe nicht wie er auf den
> kram hinterm Gleichheitszeichen gekommen ist!!!

Sagtest du nicht selbst, dass ihr das irgendwie mit "Newton oder Jacobi" machen solltet?
Ich kenne mich damit leider nicht aus, habe aber schon mal den Begriff "Jacobi-Matrix" gehört.
Schau mal in dein Skript zu diesem Thema.
Gruß Abakus


Bezug
                                        
Bezug
Lösung nichtlinearer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:43 Mo 02.03.2009
Autor: Denny22

Hallo,

das ist das Newton-Verfahren im mehrdimensionalen (genauer: im 2-dimensionalen). Ist sehr gut

[]http://de.wikipedia.org/wiki/Newton-Verfahren

erklärt. Die Gleichung entspricht dort genau der Zeile:

[mm] $x_{n + 1}:= N_f(x_n) [/mm] = [mm] x_n [/mm] - [mm] (J(x_n))^{-1}f(x_n)$ [/mm]

wobei [mm] $(J(x_n))^{-1}$ [/mm] die Inverse der Jacobi-Matrix im Punkt [mm] $x_n$ [/mm] ist. [mm] $x_0$ [/mm] ist überings Dein Startwert.

Gruß




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]