www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Lösung eines Integrals
Lösung eines Integrals < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung eines Integrals: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:24 Mo 02.11.2009
Autor: Kainor

Aufgabe
[mm] \integral_{}^{}{\bruch{1}{\wurzel{-1+cos(x)}} dx}= [/mm] ??? = [mm] \bruch{(2 *ln(Tan[x/4]) *Sin[x/2])}{\wurzel(-1 + Cos[x])} [/mm]

Das Ergebnis kenn ich aber der Weg dort hin ist mir ein Rätsel.

        
Bezug
Lösung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Mo 02.11.2009
Autor: MathePower

Hallo Kainor,

> [mm]\integral_{}^{}{\bruch{1}{\wurzel{-1+cos(x)}} dx}=[/mm] ??? =
> [mm]\bruch{(2 *ln(Tan[x/4]) *Sin[x/2])}{\wurzel(-1 + Cos[x])}[/mm]


Das Problem ist, daß der Ausdruck unter der Wurzel [mm]\le 1[/mm] ist.

Stünde hier

[mm]\integral_{}^{}{\bruch{1}{\wurzel{1-cos(x)}} dx}[/mm]

so wäre hiervon

[mm]2 *ln(Tan[x/4])[/mm]

eine Stammfunktion.


>  
> Das Ergebnis kenn ich aber der Weg dort hin ist mir ein
> Rätsel.


Gruss
MathePower

Bezug
                
Bezug
Lösung eines Integrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 Mo 02.11.2009
Autor: Kainor

mMn ist der Ausdruck -1 [mm] \le [/mm] x [mm] \le [/mm] 0
;) ,ja aber es muss ja trotzdem gehen. Das Ergebnis habe ich noch mal abgleitet und vereinfacht und es kommt tatsächlich raus (mit dem PC)

Bezug
                        
Bezug
Lösung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Mo 02.11.2009
Autor: MathePower

Hallo Kainor,

> mMn ist der Ausdruck -1 [mm]\le[/mm] x [mm]\le[/mm] 0
> ;) ,ja aber es muss ja trotzdem gehen. Das Ergebnis habe
> ich noch mal abgleitet und vereinfacht und es kommt
> tatsächlich raus (mit dem PC)  


Nun, da hat man sich wohl mit einem Trick beholfen:

[mm]ln(Tan[x/4])*\blue{1}=ln(Tan[x/4])*\blue{\wurzel{2}*\bruch{Sin[x/2]}{\wurzel{1 - Cos[x]}}}[/mm]

Gemäß Additionstheoremen gilt:

[mm]1-\cos\left(x\right)=2*\sin^{2}\left(\bruch{x}{2}\right)[/mm]


Gruss
MathePower

Bezug
                                
Bezug
Lösung eines Integrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:03 Mo 02.11.2009
Autor: Kainor

Also ich versteh grad nicht wie mir das helfen soll

[mm] ln(Tan[x/4])\cdot{}\blue{1} [/mm] ist ja keine Lösung meine Integrals sondern von

1-cos(x) ... obwohl ich hatte mal ein Ansatz wo ich t=x/2 subst. habe und dann blieb da [mm] \wurzel{-2}=i*\wurzel{2} [/mm] unter der Wurzel stehen da würde ja dann die [mm] \wurzel{2} [/mm] von deinem Ansatz wegfallen, aber das i bleibt

Bezug
                                        
Bezug
Lösung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 21:17 Mo 02.11.2009
Autor: MathePower

Hallo Kainor,

> Also ich versteh grad nicht wie mir das helfen soll


Wendet man das Additionstheoorem

[mm]\cos\left(x\right)=1-2*\sin^{2}\left(\bruch{x}{2}\right)[/mm]

und anschliessend die trigonometrische Substitution

[mm]\tan\left(\bruch{x}{4}\right)=t[/mm]

an, dann kommt man auf die Stammfunktion

[mm]ln(Tan[x/4])[/mm]


>  
> [mm]ln(Tan[x/4])\cdot{}\blue{1}[/mm] ist ja keine Lösung meine
> Integrals sondern von


Beachte, daß [mm]-1+\cos\left(x}\right)=\left(-1\right)*\left(\cos\left(x\right)-1\right)[/mm]

Daher bleibt auch ein "i" im Nenner stehen.


>  
> 1-cos(x) ... obwohl ich hatte mal ein Ansatz wo ich t=x/2
> subst. habe und dann blieb da [mm]\wurzel{-2}=i*\wurzel{2}[/mm]
> unter der Wurzel stehen da würde ja dann die [mm]\wurzel{2}[/mm]
> von deinem Ansatz wegfallen, aber das i bleibt


Das ist richtig.


Gruss
MathePower

Bezug
                                                
Bezug
Lösung eines Integrals: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:57 Mo 02.11.2009
Autor: Kainor

Vielen Dank für die Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]