www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Lösung der Gleichungen
Lösung der Gleichungen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung der Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Do 16.10.2008
Autor: SirSmoke

Aufgabe
z sei eine komplexe Lösung der Gleichung [mm] z^4+z^3+z^2+z+1=0. [/mm] Zeige:

(i) [mm] \overline{z} [/mm] = [mm] z^{-1} [/mm]  ,  (ii) [mm] z+z^{-1} [/mm] genügt einer quadratischen Gleichung mit rationalen Koeffizienten
(iii) Drücke Real- und Imaginärteil von z mit Hilfe von reellen Quadratwurzeln aus. Wieviele Lösungen z gibt es? Wo liegen diese Lösungen in der komplexen Zahlenebene?

Hallo!
Ich habe zu dieser Aufgabe Tipps gelesen und zwar:

(i) Gleichung mit (z-1) mulitiplizieren
(ii) Gleichung durch [mm] z^2 [/mm] teilen und dann versuchen [mm] (\bruch{z+1}{z})^2 [/mm] auszuklammern
(iii) [mm] z+\overline{z}=a+bi [/mm] + a-bi=... und dann die Gleichung aus (ii) einsetzen.

Nur irgendwie komme ich mit diesen Tipps auch nich so recht weiter.
Wenn ich bei (i) mit (z-1) multiplizier bekomme ich:

[mm] z^5-1=0 [/mm]

Nur was soll ich damit anfangen?

Bei (ii) [mm] (\bruch{z+1}{z})^2*z^2+z+1=0 [/mm]

Kann mir bitte jemand helfen :(

        
Bezug
Lösung der Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Do 16.10.2008
Autor: abakus


> z sei eine komplexe Lösung der Gleichung [mm]z^4+z^3+z^2+z+1=0.[/mm]
> Zeige:
>  
> (i) [mm]\overline{z}[/mm] = [mm]z^{-1}[/mm]  ,  (ii) [mm]z+z^{-1}[/mm] genügt einer
> quadratischen Gleichung mit rationalen Koeffizienten
>  (iii) Drücke Real- und Imaginärteil von z mit Hilfe von
> reellen Quadratwurzeln aus. Wieviele Lösungen z gibt es? Wo
> liegen diese Lösungen in der komplexen Zahlenebene?
>  Hallo!
>  Ich habe zu dieser Aufgabe Tipps gelesen und zwar:
>  
> (i) Gleichung mit (z-1) mulitiplizieren
>  (ii) Gleichung durch [mm]z^2[/mm] teilen und dann versuchen
> [mm](\bruch{z+1}{z})^2[/mm] auszuklammern
>  (iii) [mm]z+\overline{z}=a+bi[/mm] + a-bi=... und dann die
> Gleichung aus (ii) einsetzen.
>  
> Nur irgendwie komme ich mit diesen Tipps auch nich so recht
> weiter.
>  Wenn ich bei (i) mit (z-1) multiplizier bekomme ich:
>  
> [mm]z^5-1=0[/mm]
>  
> Nur was soll ich damit anfangen?
>  
> Bei (ii) [mm](\bruch{z+1}{z})^2*z^2+z+1=0[/mm]
>  
> Kann mir bitte jemand helfen :(

Aus [mm] z^5-1=0 [/mm] folgt [mm] z^5=1. [/mm] Die 5 Lösungen dieser Gleichung lassen sich mit der Formel von Moivre leicht ermitteln.
Gruß Abakus



Bezug
                
Bezug
Lösung der Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:07 Do 16.10.2008
Autor: abakus


> > z sei eine komplexe Lösung der Gleichung [mm]z^4+z^3+z^2+z+1=0.[/mm]
> > Zeige:
>  >  
> > (i) [mm]\overline{z}[/mm] = [mm]z^{-1}[/mm]  ,  (ii) [mm]z+z^{-1}[/mm] genügt einer
> > quadratischen Gleichung mit rationalen Koeffizienten
>  >  (iii) Drücke Real- und Imaginärteil von z mit Hilfe von
> > reellen Quadratwurzeln aus. Wieviele Lösungen z gibt es? Wo
> > liegen diese Lösungen in der komplexen Zahlenebene?
>  >  Hallo!
>  >  Ich habe zu dieser Aufgabe Tipps gelesen und zwar:
>  >  
> > (i) Gleichung mit (z-1) mulitiplizieren
>  >  (ii) Gleichung durch [mm]z^2[/mm] teilen und dann versuchen
> > [mm](\bruch{z+1}{z})^2[/mm] auszuklammern
>  >  (iii) [mm]z+\overline{z}=a+bi[/mm] + a-bi=... und dann die
> > Gleichung aus (ii) einsetzen.
>  >  
> > Nur irgendwie komme ich mit diesen Tipps auch nich so recht
> > weiter.
>  >  Wenn ich bei (i) mit (z-1) multiplizier bekomme ich:
>  >  
> > [mm]z^5-1=0[/mm]
>  >  
> > Nur was soll ich damit anfangen?
>  >  
> > Bei (ii) [mm](\bruch{z+1}{z})^2*z^2+z+1=0[/mm]
>  >  
> > Kann mir bitte jemand helfen :(
>
> Aus [mm]z^5-1=0[/mm] folgt [mm]z^5=1.[/mm] Die 5 Lösungen dieser Gleichung
> lassen sich mit der Formel von Moivre leicht ermitteln.
>  Gruß Abakus
>  
>  

Ach so, und z+1/z ist hier 2*cos 72° (bzw. -2*cos 72°). Der Wert dieses Terms ist Lösung einer quadratischen Gleichung (hängt irgendwie mit dem goldenen Schnitt zusammen, da steckt was mit  [mm] \wurzel{5} [/mm] drin).

Abakus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]