www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Lösung System 1. Ordnung
Lösung System 1. Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung System 1. Ordnung: Tip
Status: (Frage) überfällig Status 
Datum: 10:38 Sa 03.11.2007
Autor: steffenhst

Aufgabe
Lösen Sie das AWP mit
[mm] y_{1}' [/mm] = [mm] y_{2} [/mm] - [mm] \lambda [/mm]
[mm] y_{2}' [/mm] = [mm] y_{1} [/mm] + [mm] \lambda(x+1) [/mm]

[mm] y_{1}(0) [/mm] = 0
[mm] y_{2}(0) [/mm] = 0.

Hallo und Guten Morgen,

ich bin hier mit der Approximation von Picard-Lindelöf rangegangen. Nebenbei: Gibt es eigentlich auch ein anderes Verfahren, um diese Dinger zu lösen?

Ich kriege folgendes: [mm] y_{0}(x) [/mm] = [mm] \vektor{0 \\ 0} [/mm]
[mm] y_{1}(x) [/mm] = [mm] \vektor{\integral_{}^{} -\lambda dt \\ \integral_{}^{} \lambda t + \lambda dt} [/mm] = [mm] \vektor{-\lambda x \\ 0.5\lambda x^{2} + \lambda x} [/mm]
[mm] y_{2}(x) [/mm] = [mm] \vektor{\integral_{}^{} 0.5 \lambda t^{2} + \lambda t - \lambda dt \\ \integral_{}^{} \lambda dt} [/mm] = [mm] \vektor{\bruch{1}{6}*\lambda x^{3} + 0.5 \lambda x^{2} - \lambda x \\ \lambda x} [/mm]
[mm] y_{3}(x) [/mm] = [mm] \vektor{0.5 \lambda x^{2} - \lambda x \\ \bruch{1}{24} \lambda x^{4} + \bruch {1}{6} \lambda x^{3} + \lambda x} [/mm]
...
Mein Problem ist, dass ich keine Reihe angeben kann, die diese Summen erfüllen. Habt ihr vielleicht einen Tip?

Vielen Dank, Steffen

        
Bezug
Lösung System 1. Ordnung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mo 05.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]