www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Lösung GLS mit Parameter
Lösung GLS mit Parameter < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung GLS mit Parameter: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:00 Do 22.12.2011
Autor: Munzijoy

Aufgabe
Als Teil einer Eigenwertaufgabe ist quasi die Lösung von [mm] \pmat{ 2 & -1 & 3 \\ 2 & 5 & 3 \\ 2 & 1 & 3 } [/mm] *  [mm] \vektor{x_{1} \\ x_{2} \\ x_{3}} [/mm] = [mm] \vektor{0 \\ 0 \\ 0} [/mm] gesucht. Lösung ist t * [mm] \vektor{-3 \\ 0 \\ 2} [/mm] (t ist reele Zahl).

Die Lösung nach dem Gaußschen Algorithmus liefert in der letzten Zeile 0=0. Dies eingesetzt liefert nur die triviale Lösung, insofern, dass alle [mm] x_{i} [/mm] Null sind, nicht aber die Lösung mit Parameter (s.o.). Wie geht man vor, wenn man eine solch parametriesierte Lösung erhält, bzw. wo könnte man das online nachlesen?

VielenDank und viele Grüße
Tom

        
Bezug
Lösung GLS mit Parameter: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:06 Do 22.12.2011
Autor: angela.h.b.


> Als Teil einer Eigenwertaufgabe ist quasi die Lösung von
> [mm]\pmat{ 2 & -1 & 3 \\ 2 & 5 & 3 \\ 2 & 1 & 3 }[/mm] *  [mm]\vektor{x_{1} \\ x_{2} \\ x_{3}}[/mm] = [mm]\vektor{0 \\ 0 \\ 0}[/mm]
> gesucht. Lösung ist t * [mm]\vektor{-3 \\ 0 \\ 2}[/mm] (t ist reele
> Zahl).

Hallo,

liefere mal die ZSF, dann kann Dir jemand direkt am Beispiel das Kochrezept erklären.

Gruß v. Angela


Bezug
                
Bezug
Lösung GLS mit Parameter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 Do 22.12.2011
Autor: Munzijoy

Mein Lösungsansatz:

[mm] \pmat{ 2 & -1 & 3 & |0 \\ 2 & 5 & 3 & |0 \\ 2 & 1 & 3 & |0} [/mm]

[mm] \pmat{ 6 & 0 & |0 \\ 2 & 0 & |0} [/mm]

[mm] \pmat{ 0 & | 0} [/mm]

Bezug
                        
Bezug
Lösung GLS mit Parameter: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 Do 22.12.2011
Autor: notinX

Hallo,

zunächst solltest Du eine Frage stellen und keine Mitteilung sofern Du eine Antwort erwartest.
Nun zu Deinem Ansatz:

> Mein Lösungsansatz:
>  
> [mm]\pmat{ 2 & -1 & 3 & |0 \\ 2 & 5 & 3 & |0 \\ 2 & 1 & 3 & |0}[/mm]
>  
> [mm]\pmat{ 6 & 0 & |0 \\ 2 & 0 & |0}[/mm]
>  
> [mm]\pmat{ 0 & | 0}[/mm]  

Was ist denn hier passiert [verwirrt] ?
Wieso verschwinden aus der Matrix Zeilen und Spalten und am Ende bleibt nur noch ein Skalar ubrig?
So sieht eine ZSF ganz sicher nicht aus...

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]