www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Lösen von Ungleichungen
Lösen von Ungleichungen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen von Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:04 Do 07.05.2009
Autor: frankina

Aufgabe
Lösen Sie folgende Ungleichungen:
a)  [mm] \bruch{2x+3}{4-x}>3 [/mm]

b)  [mm] \bruch{x-2}{3x+2}<\bruch{x+1}{3x-1} [/mm]

c)   [mm] 6x^{2}+ [/mm] 5x - 6 < 0

d)  [mm] |x-3|>3\*|2x-3| [/mm]

a) [mm] \bruch{2x+3}{4-x}>3 [/mm]

1. Fall: x [mm] \in (-\infty [/mm] ; 4)  (--> (4 - x) > 0)
2. Fall: x [mm] \in [/mm] (4; [mm] \infty) [/mm]    (--> (4 - x) < 0)

1.
2x + 3 < 3(4 - x)
x < 1.8
[mm] L_{1} [/mm] = [mm] (-\infty [/mm] ; 4) [mm] \cap (-\infty [/mm] ; 1.8) = [mm] (-\infty [/mm] ; 1.8)

2.
2x + 3 > 3(4 - x)
x > 1.8
[mm] L_{2} [/mm] = (4; [mm] \infty) \cap [/mm] (1.8; [mm] \infty) [/mm] = (4; [mm] \infty) [/mm]

L = [mm] L_{1} \cup L_{2} [/mm] = [mm] (-\infty [/mm] ; 1.8) [mm] \cup [/mm] (4; [mm] \infty) [/mm]


b) [mm] \bruch{x-2}{3x+2}<\bruch{x+1}{3x-1} [/mm]

1. Fall: x < [mm] -\bruch{2}{3} [/mm]       (--> (3x+2)(3x-1) > 0)
2. Fall: [mm] -\bruch{2}{3} [/mm] < x < [mm] \bruch{1}{3} [/mm]   (--> (3x+2)(3x-1) < 0)
3. Fall: x > [mm] \bruch{1}{3} [/mm]        (--> (3x+2)(3x-1) > 0)

1.
[mm] \bruch{x-2}{3x+2}<\bruch{x+1}{3x-1} [/mm]  
(x-2)(3x-1) < (x+1)(3x+2)
-7x < 5x
-12x < 0
x > 0
[mm] L_{1} [/mm] = [mm] (-\infty; -\bruch{2}{3}) \cap [/mm] (0; [mm] \infty) [/mm] = [mm] \emptyset [/mm]

2.
[mm] \bruch{x-2}{3x+2}<\bruch{x+1}{3x-1} [/mm]  
(x-2)(3x-1) > (x+1)(3x+2)
-12x > 0
x < 0
[mm] L_{2} [/mm] = [mm] (-\bruch{2}{3}; \bruch{1}{3}) \cap (-\infty; [/mm] 0) = [mm] (-\bruch{2}{3}; [/mm] 0)

3.
[mm] \bruch{x-2}{3x+2}<\bruch{x+1}{3x-1} [/mm]  
(x-2)(3x-1) < (x+1)(3x+2)
-12x < 0
x > 0
[mm] L_{3} [/mm] = [mm] (\bruch{1}{3}; \infty) \cap [/mm] (0; [mm] \infty) [/mm] = [mm] (\bruch{1}{3}; \infty) [/mm]

L = [mm] L_{1} \cup L_{2} \cup L_{3}= (-\bruch{2}{3}; [/mm] 0) [mm] \cup (\bruch{1}{3}; \infty) [/mm]


Ich würde gerne wissen, ob das soweit richtig ist.
(Abgesehen von der schreibweise der Lösungsmengen, die habe ich so von meinem Professor übernommen.)


c) [mm] 6x^{2}+ [/mm] 5x - 6 < 0

Bei der Aufgabe stehe ich auf dem Schlauch.
Man muss doch zuerst die quadratische Gleichung lösen, oder?
Aber leider komme ich mit der pq-Formel auf eine negative wurzel...
Könnte mir hier jemand beim Ansatz helfen ?


d) [mm] |x-3|>3\*|2x-3| [/mm]

1. Fall: x [mm] \ge [/mm] 3
2. Fall: 1.5 [mm] \le [/mm] x < 3
3. Fall: x < 1.5

Ist die Fallunterscheidung so richtig ?
Bin mir unsicher wegen den zwei Beträgen.
Und wenn ja kann ich doch bei der Lösung die Beträge weglassen und einfach die Fälle berechnen, oder ?

Vielen dank an alle!
Frankina


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. :)

        
Bezug
Lösen von Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Do 07.05.2009
Autor: M.Rex

Hallo

> Lösen Sie folgende Ungleichungen:
>  a)  [mm]\bruch{2x+3}{4-x}>3[/mm]
>  
> b)  [mm]\bruch{x-2}{3x+2}<\bruch{x+1}{3x-1}[/mm]
>  
> c)   [mm]6x^{2}+[/mm] 5x - 6 < 0
>  
> d)  [mm]|x-3|>3\*|2x-3|[/mm]

>
>
>

>  a) [mm]\bruch{2x+3}{4-x}>3[/mm]
>  
> 1. Fall: x [mm]\in (-\infty[/mm] ; 4)  (--> (4 - x) > 0)
>  2. Fall: x [mm]\in[/mm] (4; [mm]\infty)[/mm]    (--> (4 - x) < 0)

>  
> 1.
>  2x + 3 < 3(4 - x)
>  x < 1.8
>  [mm]L_{1}[/mm] = [mm](-\infty[/mm] ; 4) [mm]\cap (-\infty[/mm] ; 1.8) = [mm](-\infty[/mm] ;
> 1.8)
>
> 2.
>  2x + 3 > 3(4 - x)

>  x > 1.8

>  [mm]L_{2}[/mm] = (4; [mm]\infty) \cap[/mm] (1.8; [mm]\infty)[/mm] = (4; [mm]\infty)[/mm]
>  
> L = [mm]L_{1} \cup L_{2}[/mm] = [mm](-\infty[/mm] ; 1.8) [mm]\cup[/mm] (4; [mm]\infty)[/mm]

Korrekt

>  
>
> b) [mm]\bruch{x-2}{3x+2}<\bruch{x+1}{3x-1}[/mm]
>  
> 1. Fall: x < [mm]-\bruch{2}{3}[/mm]       (--> (3x+2)(3x-1) > 0)
>  2. Fall: [mm]-\bruch{2}{3}[/mm] < x < [mm]\bruch{1}{3}[/mm]   (-->

> (3x+2)(3x-1) < 0)
>  3. Fall: x > [mm]\bruch{1}{3}[/mm]        (--> (3x+2)(3x-1) > 0)

>  
> 1.
>   [mm]\bruch{x-2}{3x+2}<\bruch{x+1}{3x-1}[/mm]  
> (x-2)(3x-1) < (x+1)(3x+2)
>  -7x < 5x
>  -12x < 0
>  x > 0

>  [mm]L_{1}[/mm] = [mm](-\infty; -\bruch{2}{3}) \cap[/mm] (0; [mm]\infty)[/mm] =
> [mm]\emptyset[/mm]
>  
> 2.
>  [mm]\bruch{x-2}{3x+2}<\bruch{x+1}{3x-1}[/mm]  
> (x-2)(3x-1) > (x+1)(3x+2)
>  -12x > 0

>  x < 0
>  [mm]L_{2}[/mm] = [mm](-\bruch{2}{3}; \bruch{1}{3}) \cap (-\infty;[/mm] 0) =
> [mm](-\bruch{2}{3};[/mm] 0)
>  
> 3.
>   [mm]\bruch{x-2}{3x+2}<\bruch{x+1}{3x-1}[/mm]  
> (x-2)(3x-1) < (x+1)(3x+2)
>  -12x < 0
>  x > 0

>  [mm]L_{3}[/mm] = [mm](\bruch{1}{3}; \infty) \cap[/mm] (0; [mm]\infty)[/mm] =
> [mm](\bruch{1}{3}; \infty)[/mm]
>  
> L = [mm]L_{1} \cup L_{2} \cup L_{3}= (-\bruch{2}{3};[/mm] 0) [mm]\cup (\bruch{1}{3}; \infty)[/mm]

Das ist korrekt.

>  
>
> Ich würde gerne wissen, ob das soweit richtig ist.
>  (Abgesehen von der schreibweise der Lösungsmengen, die
> habe ich so von meinem Professor übernommen.)
>  
>
> c) [mm]6x^{2}+[/mm] 5x - 6 < 0
>  
> Bei der Aufgabe stehe ich auf dem Schlauch.
> Man muss doch zuerst die quadratische Gleichung lösen,
> oder?
>  Aber leider komme ich mit der pq-Formel auf eine negative
> wurzel...
>  Könnte mir hier jemand beim Ansatz helfen ?

[mm] 6x^{2}+5x-6=0 [/mm]
[mm] \gdw x_{1;2}=-\bruch{5}{12}\pm\wurzel{\bruch{169}{144}} [/mm]
[mm] =-\bruch{5}{12}\pm\bruch{13}{12} [/mm]
Also [mm] x_{1}=-\bruch{3}{2} [/mm] und [mm] x_{2}=bruch{2}{3} [/mm]

Somit:
[mm] 6x^{2}+5x-6<0 [/mm]
[mm] \gdw 6\left(x+\bruch{3}{2}\right)\left(x-\bruch{2}{3}\right)<0 [/mm]

>  
>
> d) [mm]|x-3|>3\*|2x-3|[/mm]
>  
> 1. Fall: x [mm]\ge[/mm] 3
>  2. Fall: 1.5 [mm]\le[/mm] x < 3
>  3. Fall: x < 1.5
>  
> Ist die Fallunterscheidung so richtig ?

Yep.

Für x>3:
[mm] |x-3|>3\*|2x-3| [/mm]
[mm] \gdw [/mm] x-3>3(2x-3)
Für 1.5 [mm] \le [/mm] x < 3
[mm] |x-3|>3\*|2x-3| [/mm]
[mm] \gdw [/mm] -(x-3)>3(2x-3)
Für x<1,5:
[mm] |x-3|>3\*|2x-3| [/mm]
[mm] \gdw [/mm] -(x-3)>3(-(2x-3))

>  Bin mir unsicher wegen den zwei Beträgen.
>  Und wenn ja kann ich doch bei der Lösung die Beträge
> weglassen und einfach die Fälle berechnen, oder ?

Fast. Du musst nur passende Minusklammern machen, das ist die Definition der Betragsfunktion

>  
> Vielen dank an alle!
>  Frankina
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt. :)

Marius

Bezug
                
Bezug
Lösen von Ungleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:31 Do 07.05.2009
Autor: frankina

vielen dank für die schnelle antwort :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]