www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Lösen der DGL
Lösen der DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen der DGL: Idee
Status: (Frage) beantwortet Status 
Datum: 18:59 Mi 09.07.2014
Autor: Leon25

Aufgabe
Lösen Sie die Dfferentialgleichung [mm] u'(t)= sin(t)u(t) [/mm] mit [mm] u(0)=5[/mm]

Hallo zusammen,

ich habe zu der Aufgabe folgenden Lösungsvorschlag bin mir aber nicht sicher dabei, wenn mir jemand helfen könnte Fehler zu finden oder meinen Lösungsweg bestätigen könnte wäre das super.

Also:

[mm] u'(t)=\sin t * u(t) [/mm] |  [mm] /u(t)[/mm]
[mm]\gdw \bruch{u'(t)}{u(t)}=\sin t[/mm]

dann mithilfe des Ln-Tricks weiterrechnen:

[mm] \bruch{u'(t)}{u(t)}=(ln(|\sin t|))' [/mm]
[mm] \gdw \cos t *\bruch{1}{\sin t}=\bruch{1}{\tan t}[/mm]

Bin ich jetzt schon fertig ? Und da ich die Bedingung [mm] u(0)=5[/mm] nicht benutzt habe hab ich das Gefühl das ist nicht so ganz richtig..

Vielen Dank an alle die sich Zeit für mein Problem nehmen

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Lösen der DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 Mi 09.07.2014
Autor: Diophant

Hallo,

> Lösen Sie die Dfferentialgleichung [mm]u'(t)= sin(t)u(t)[/mm] mit
> [mm]u(0)=5[/mm]
> Hallo zusammen,

>

> ich habe zu der Aufgabe folgenden Lösungsvorschlag bin mir
> aber nicht sicher dabei, wenn mir jemand helfen könnte
> Fehler zu finden oder meinen Lösungsweg bestätigen
> könnte wäre das super.

>

> Also:

>

> [mm]u'(t)=\sin t * u(t)[/mm] | [mm]/u(t)[/mm]
> [mm]\gdw \bruch{u'(t)}{u(t)}=\sin t[/mm]

>

> dann mithilfe des Ln-Tricks weiterrechnen:

>

> [mm]\bruch{u'(t)}{u(t)}=(ln(|\sin t|))'[/mm]
> [mm]\gdw \cos t *\bruch{1}{\sin t}=\bruch{1}{\tan t}[/mm]

>

Der besagte Trick funktioniert hier, aber nicht so, wie du oben gerechnet hast. Der einfachste Weg wäre hier die Trennung der Variablen. Das geht recht einfach und sollte bekannt sein, wenn solche Aufgaben gestellt werden.

Wenn du aber deinen 'Trick' anwednen möchtest, dann musst du auf beiden Seiten korrekt nach t integrieren und dabei die Integrationskonstante nicht vergessen!


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]