www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Lösen Wärmeleitungsgleichung
Lösen Wärmeleitungsgleichung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen Wärmeleitungsgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 Fr 18.03.2011
Autor: Bayer04

Aufgabe
Lösen Sie die lineare Wärmeleitungsgleichung

[mm] u_{t}(x,t) [/mm] = [mm] \Delta [/mm] u(x,t)

mit den Randbedingungen

u(0,t) = [mm] u(\pi,t) [/mm] = 0, [mm] t\ge [/mm] 0,

und der Anfangsbedingung

u(x,0)= [mm] f(x)=\begin{cases} x, & \mbox{für } 0\le x\le\bruch{\pi}{2} \mbox{ } \\ \pi-x, & \mbox{für } \bruch{\pi}{2} \le x\le \pi \mbox{ } \end{cases} [/mm]

Hallo zusammen,
ich hänge seit langer Zeit an dieser Aufgabe und hoffe ihr könnt mir da vielleicht weiterhelfen.

Mein Ansatz:

Ich wähle zuerst den Separationsansatz:

u(x,t) = [mm] \mathcal{X}(x)\mathcal{T}(x) [/mm]

Nun Anpassen an Wärmeleitungsgleichung:

[mm] u_{t}= \mathcal{X}(x)\mathcal{T'}(x) [/mm]

[mm] \Delta [/mm] u = [mm] u_{xx} [/mm] = [mm] \mathcal{X''}(x)\mathcal{T}(x) [/mm]
hier schließt sich gleich meine erste Frage an: Warum leiter der Laplace Operator [mm] \Delta [/mm] nur nach x und nicht nach t ?

[mm] u_{t} [/mm] = [mm] u_{xx} [/mm]

[mm] \mathcal{X}(x)\mathcal{T'}(x) [/mm] = [mm] \mathcal{X''}(x)\mathcal{T}(x) [/mm]

--> [mm] \bruch{\mathcal{X''}}{\mathcal{X}}= \bruch{\mathcal{T'}}{\mathcal{T}} [/mm] = [mm] -\lambda [/mm] , [mm] \lambda=const. [/mm]

Es ergeben sich somit 2 Gleichungen:

(I)  [mm] \mathcal{X''}=\lambda\mathcal{X} [/mm]
(II) [mm] \mathcal{T'}=-\lambda\mathcal{T} [/mm]

Löse (I) --> [mm] \mathcal{X''}+\lambda\mathcal{X}=0 [/mm]
         -->  [mm] s_{1,2} [/mm] = [mm] \pm \wurzel{\lambda}i [/mm]

Es ergibt sich das FMS : [mm] sin\wurzel{\lambda}x [/mm] ; [mm] cos\wurzel{\lambda}x [/mm]

cos wird nicht weiterbetrachtet, da es die RB nicht erfüllt.

Analog wird für (II) das selbe getan. Ich erspar euch und mir hier die Rechenschritte.

Letzendlich erhalten wir:

u(x,t) = [mm] \mathcal{X}(x)\mathcal{T}(x) [/mm]

       = [mm] C1C2sin(kx)e^{-k^2t} [/mm]
u(x,t) = [mm] c_{k} sin(kx)e^{-k^2t} [/mm]

Mithilfe Anfangsbedingung folgt:
U(x,0)= [mm] c_{k}sin(kx) [/mm] = f(x)

Nun berechnet er in der Musterlösung im nächsten Schritt die konstante C mithilfe der Fourier Reihenentwicklung:

[mm] c_{k} [/mm] = [mm] \bruch{2}{\pi} \integral_{0}^{\pi}{f(x) sin(kx) dx} [/mm]

Hier nochmal eine kurze Frage: warum nimmt er für die Entwicklung den Sinus und nicht Cosinus?
Hängt dies damit zusammen, dass f(x)=x eine punktsymm. Funktion ist?


Hoffe Ihr könnt mir weiterhelfen.
Danke im Voraus.

LG

        
Bezug
Lösen Wärmeleitungsgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 03:16 Sa 19.03.2011
Autor: MathePower

Hallo Bayer04,


> Lösen Sie die lineare Wärmeleitungsgleichung
>  
> [mm]u_{t}(x,t)[/mm] = [mm]\Delta[/mm] u(x,t)
>  
> mit den Randbedingungen
>  
> u(0,t) = [mm]u(\pi,t)[/mm] = 0, [mm]t\ge[/mm] 0,
>  
> und der Anfangsbedingung
>
> u(x,0)= [mm]f(x)=\begin{cases} x, & \mbox{für } 0\le x\le\bruch{\pi}{2} \mbox{ } \\ \pi-x, & \mbox{für } \bruch{\pi}{2} \le x\le \pi \mbox{ } \end{cases}[/mm]
>  
> Hallo zusammen,
>  ich hänge seit langer Zeit an dieser Aufgabe und hoffe
> ihr könnt mir da vielleicht weiterhelfen.
>  
> Mein Ansatz:
>  
> Ich wähle zuerst den Separationsansatz:
>  
> u(x,t) = [mm]\mathcal{X}(x)\mathcal{T}(x)[/mm]
>  
> Nun Anpassen an Wärmeleitungsgleichung:
>  
> [mm]u_{t}= \mathcal{X}(x)\mathcal{T'}(x)[/mm]
>  
> [mm]\Delta[/mm] u = [mm]u_{xx}[/mm] = [mm]\mathcal{X''}(x)\mathcal{T}(x)[/mm]
>  hier schließt sich gleich meine erste Frage an: Warum
> leiter der Laplace Operator [mm]\Delta[/mm] nur nach x und nicht
> nach t ?


Daß der Laplace-Operator nur nach einer Dimension ableitet,
ist eine häufig verwendete Vereinfachung.


>  
> [mm]u_{t}[/mm] = [mm]u_{xx}[/mm]
>  
> [mm]\mathcal{X}(x)\mathcal{T'}(x)[/mm] =
> [mm]\mathcal{X''}(x)\mathcal{T}(x)[/mm]
>  
> --> [mm]\bruch{\mathcal{X''}}{\mathcal{X}}= \bruch{\mathcal{T'}}{\mathcal{T}}[/mm]
> = [mm]-\lambda[/mm] , [mm]\lambda=const.[/mm]
>  
> Es ergeben sich somit 2 Gleichungen:
>  
> (I)  [mm]\mathcal{X''}=\lambda\mathcal{X}[/mm]


Diese Gleichung muss doch lauten:

[mm]\mathcal{X''}=\blue{-}\lambda\mathcal{X}[/mm]


>  (II) [mm]\mathcal{T'}=-\lambda\mathcal{T}[/mm]
>  
> Löse (I) --> [mm]\mathcal{X''}+\lambda\mathcal{X}=0[/mm]
>           -->  [mm]s_{1,2}[/mm] = [mm]\pm \wurzel{\lambda}i[/mm]
>  
> Es ergibt sich das FMS : [mm]sin\wurzel{\lambda}x[/mm] ;
> [mm]cos\wurzel{\lambda}x[/mm]
>  
> cos wird nicht weiterbetrachtet, da es die RB nicht
> erfüllt.
>  
> Analog wird für (II) das selbe getan. Ich erspar euch und
> mir hier die Rechenschritte.
>  
> Letzendlich erhalten wir:
>  
> u(x,t) = [mm]\mathcal{X}(x)\mathcal{T}(x)[/mm]
>  
> = [mm]C1C2sin(kx)e^{-k^2t}[/mm]
>  u(x,t) = [mm]c_{k} sin(kx)e^{-k^2t}[/mm]
>  
> Mithilfe Anfangsbedingung folgt:
> U(x,0)= [mm]c_{k}sin(kx)[/mm] = f(x)
>  
> Nun berechnet er in der Musterlösung im nächsten Schritt
> die konstante C mithilfe der Fourier Reihenentwicklung:
>  
> [mm]c_{k}[/mm] = [mm]\bruch{2}{\pi} \integral_{0}^{\pi}{f(x) sin(kx) dx}[/mm]
>  
> Hier nochmal eine kurze Frage: warum nimmt er für die
> Entwicklung den Sinus und nicht Cosinus?
> Hängt dies damit zusammen, dass f(x)=x eine punktsymm.
> Funktion ist?


Das hängt damit zusammen, daß die allgemeine Lösungsfunktion
auch so aufgebaut ist.


>  
> Hoffe Ihr könnt mir weiterhelfen.
>  Danke im Voraus.
>  
> LG


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]