www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Naive Mengenlehre" - Lösen Ungleichung
Lösen Ungleichung < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen Ungleichung: Supremum, Infimum
Status: (Frage) beantwortet Status 
Datum: 12:08 Sa 13.03.2010
Autor: M84

Also gegeben ist die folgende Menge:

x [mm] $\in$ [/mm] R | x [mm] $\not=$ [/mm] 1, [mm] $\frac{1}{1-x}$ [/mm] < 1+2x

Ich soll diese Menge auf Infimum, Minimum, Supremum, Maximum untersuchen.
Habe eine Fallunterscheidung gemacht falls 1-x>0 oder 1-x< 0 ist. Für beide Fälle nach x aufgelöst und kam dann zur Lösungsmenge: [mm] (0,$\frac{1}{2}$) $\cup$ [/mm] (1, [mm] $\infty$). [/mm]

Infimum müsste also 0 sein und Supremum [mm] $\infty$ [/mm]

Als Lösung (Leider ohne Lösungsweg) ist allerdings angegeben, dass die Lösungsmenge das Intervall [mm] ($\frac{1}{2}$, [/mm] 1) sei. Und somit das Infimum [mm] $\frac{1}{2}$ [/mm] und das Supremum 1.

Da ich allerdings auch grafisch auf meine Lösung komme, würd ich gern wissen ob ich da irgendwas grundsätzlich nicht verstanden habe, oder die Musterlösung einfach falsch ist..

Danke schonmal

mfg Markus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Lösen Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:04 Sa 13.03.2010
Autor: angela.h.b.


> Also gegeben ist die folgende Menge:
>  
> x [mm]\in[/mm] R | x [mm]\not=[/mm] 1, [mm]\frac{1}{1-x}[/mm] < 1+2x
>  
> Ich soll diese Menge auf Infimum, Minimum, Supremum,
> Maximum untersuchen.
>  Habe eine Fallunterscheidung gemacht falls 1-x>0 oder 1-x<
> 0 ist. Für beide Fälle nach x aufgelöst und kam dann zur
> Lösungsmenge: (0,[mm]\frac{1}{2}[/mm]) [mm]\cup[/mm] (1, [mm]\infty[/mm]).

Hallo,

Deine Lösung  ist richtig.


>  
> Infimum müsste also 0 sein

Ja.


> und Supremum [mm]\infty[/mm]

Nein, denn die Menge hat keine obere Schranke.
[mm] (\infty [/mm] ist doch keine reelle Zahl.)

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]