www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Lösbarkeit von Gleichungen
Lösbarkeit von Gleichungen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösbarkeit von Gleichungen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:55 Sa 06.04.2013
Autor: Mexxchen

Hallo,

ich rechne gerade an Aufgaben, bei denen man überprüfen soll, ob sie in [mm] \IZ [/mm] lösbar sind oder nicht. Ich frage mich dabei, woher ich weiß, ob ich z.B. modulo 3 oder 7 rechnen soll. Denn die Gleichung ist ja nur in [mm] \IZ [/mm] lösbar, wenn sie auch in [mm] \IZ [/mm] _{3} oder [mm] \IZ_{7} [/mm] lösbar ist.

Danke und viele Grüße
Mexxchen

        
Bezug
Lösbarkeit von Gleichungen: was für Gleichungen ?
Status: (Antwort) fertig Status 
Datum: 17:00 Sa 06.04.2013
Autor: Al-Chwarizmi

Hallo Mexxchen

> ich rechne gerade an Aufgaben, bei denen man überprüfen
> soll, ob sie in [mm]\IZ[/mm] lösbar sind oder nicht. Ich frage mich
> dabei, woher ich weiß, ob ich z.B. modulo 3 oder 7 rechnen
> soll. Denn die Gleichung ist ja nur in [mm]\IZ[/mm] lösbar, wenn
> sie auch in [mm]\IZ[/mm] _{3} oder [mm]\IZ_{7}[/mm] lösbar ist.

1.) um was für Gleichungen geht es denn ?

2.) wie sollen wir wissen, was für Modulo-Basen
ev. hilfreich sein könnten, wenn wir keine Ahnung
haben, um welche Gleichung(en) es gehen soll ?

Am besten zeigst du mal ein, zwei Beispiele !

LG ,    Al-Chw.

Bezug
                
Bezug
Lösbarkeit von Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:17 Sa 06.04.2013
Autor: Mexxchen

Stimmt, Beispiele wären wirklich hilfreich.

1) [mm] x^3 +y^3 [/mm] = 3

Bei dieser Aufgabe hätte ich mit modulo 3 gerechnet, aber richtig wäre modulo 7. Deshalb frage ich mich, wie man das sieht?

2) [mm] x^2 [/mm] + [mm] y^2 +2z^2 [/mm] = 7

Bezug
                        
Bezug
Lösbarkeit von Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Sa 06.04.2013
Autor: abakus


> Stimmt, Beispiele wären wirklich hilfreich.

>

> 1) [mm]x^3 +y^3[/mm] = 3

>

> Bei dieser Aufgabe hätte ich mit modulo 3 gerechnet, aber
> richtig wäre modulo 7. Deshalb frage ich mich, wie man das
> sieht?

Hallo,
"Richtig wäre..." ist der falsche Ausdruck.
"Günstig ist in diesem Fall..." ist eine zutreffendere Formulierung.
Das liegt im konkreten Fall ganz einfach daran, dass dritte Potenzen bei Teilung durch 7 nur sehr wenige mögliche Reste lassen.
Gruß Abakus
>

> 2) [mm]x^2[/mm] + [mm]y^2 +2z^2[/mm] = 7

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]