Lipschitzbed.&max.Lösungen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:47 Do 08.06.2006 | Autor: | Mini273 |
Aufgabe | Sei f [mm] \in C(G,\IR^{n}) [/mm] für ein offenes G [mm] \subset \IR^{N+1} [/mm] und erfülle eine lokale Lipschitzbedingung. Seien u: [mm] J_{u} \to \IR^{N} [/mm] unf v: [mm] J_{v} \to \IR^{N} [/mm] zwei maximale Lösungen der DGL x' = f(t,x).
Zu zeigen:
a) ISt u(t) [mm] \not= [/mm] v(t) für ein t [mm] \in J_{u} \cap J_{v}, [/mm] so gilt sogar u(t) [mm] \not= [/mm] v(t) für alle t [mm] \in J_{u} \cap J_{v}.
[/mm]
b) Im autonomen Fall G= [mm] \IR [/mm] x D, f(t,x) = g(x) gilt sogar: Ist u(t) [mm] \not= [/mm] v(s) für ein t [mm] \in J_{u} [/mm] und alle s [mm] \in J_{v}, [/mm] so gilt sogar u(t) [mm] \not= [/mm] v(s) für alle t [mm] \in J_{u} [/mm] und alle s [mm] \in J_{v}. [/mm] |
Hallo Forum,
ich weiß bei der Aufgabe nicht, was ich hier genau zu zeigen habe; oder wie ich hier vorgehen muss. Was eine lokale Lipschitzbedingung ist, weiß ich. Aber was hat das hier mit der Lösung des DGLs zu tun? Ich habe hier doch 2 Kurven, die sich nicht schneiden dürfen, oder? Als Tipp wurde mir der Stetigkeitssatz genannt, der doch besagt, dass das AWP eine eindeutige Lösung besitzt.
Danke im Voraus.
Grüße,
Mini
|
|
|
|
Hallo mini,
> Sei f [mm]\in C(G,\IR^{n})[/mm] für ein offenes G [mm]\subset \IR^{N+1}[/mm]
> und erfülle eine lokale Lipschitzbedingung. Seien u: [mm]J_{u} \to \IR^{N}[/mm]
> unf v: [mm]J_{v} \to \IR^{N}[/mm] zwei maximale Lösungen der DGL x'
> = f(t,x).
> Zu zeigen:
> a) ISt u(t) [mm]\not=[/mm] v(t) für ein t [mm]\in J_{u} \cap J_{v},[/mm] so
> gilt sogar u(t) [mm]\not=[/mm] v(t) für alle t [mm]\in J_{u} \cap J_{v}.[/mm]
>
> b) Im autonomen Fall G= [mm]\IR[/mm] x D, f(t,x) = g(x) gilt sogar:
> Ist u(t) [mm]\not=[/mm] v(s) für ein t [mm]\in J_{u}[/mm] und alle s [mm]\in J_{v},[/mm]
> so gilt sogar u(t) [mm]\not=[/mm] v(s) für alle t [mm]\in J_{u}[/mm] und alle
> s [mm]\in J_{v}.[/mm]
> Hallo Forum,
>
> ich weiß bei der Aufgabe nicht, was ich hier genau zu
> zeigen habe; oder wie ich hier vorgehen muss. Was eine
> lokale Lipschitzbedingung ist, weiß ich. Aber was hat das
> hier mit der Lösung des DGLs zu tun?
die lipschitz-stetigkeit ist bei den GDG meistens für die eindeutigkeit zuständig: dh. aus lipschitz-stetigkeit folgt die eindeutigkeit der lösung.
>Ich habe hier doch 2
> Kurven, die sich nicht schneiden dürfen, oder? Als Tipp
> wurde mir der Stetigkeitssatz genannt, der doch besagt,
> dass das AWP eine eindeutige Lösung besitzt.
das ist in der tat der ansatzpunkt bei dieser aufgabe:
zb. teil a): stimmen zwei lösungen in einem punkt aus [mm] $J_u\cap J_v$ [/mm] überein, so wähle diesen punkt als anfangswert für ein AWP. Aus der Eindeutigkeit der Lösung folgt dann, dass die lösungen auf dem gesamten Schnitt-Intervall gleich sein müssen.
VG
Matthias
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:24 So 11.06.2006 | Autor: | Mini273 |
Hallo MatthiasKr,
erstmal vielen Dank für deine Hilfe. Leider versteh ich nicht ganz, was du geschrieben hast.
Du hast gesagt:
> zb. teil a): stimmen zwei lösungen in einem punkt aus
> [mm]J_u\cap J_v[/mm] überein, so wähle diesen punkt als anfangswert
> für ein AWP. Aus der Eindeutigkeit der Lösung folgt dann,
> dass die lösungen auf dem gesamten Schnitt-Intervall gleich
> sein müssen.
Aber ich sollte doch zeigen: Ist u(t) [mm] \not= [/mm] v(t) für ein t [mm] \in J_{u} \cap J_{v}, [/mm] so gilt u(t) [mm] \not= [/mm] v(t) für alle t [mm] \in J_{u} \cap J_{v}. [/mm]
Also, dass die Lösungen auf [mm] J_{u} \cap J_{v} [/mm] ungleich sind...
Ich hab mal versucht, dass zu beweisen, komm aber nicht sehr weit.
Ich hab gesagt:
u, v sind 2 maximale Lösungen von x'= f(t,x).
So gilt: u= v auf [mm] J_{u} \cap J_{v}.
[/mm]
[mm] J_{u} \cap J_{v} \not= \emptyset, [/mm] da [mm] u(t_{0}) [/mm] = [mm] \lambda, v(t_{0}) [/mm] = [mm] \lambda [/mm] auf [mm] J_{u} \cap J_{v}.
[/mm]
Es gibt jetzt nach Voraussetzung ein t [mm] \in J_{u} \cap J_{v} [/mm] mit u(t) [mm] \not= [/mm] v(t).
Ich weiß jetzt leider nicht weiter, wie ich u(t) [mm] \not= [/mm] v(t) für alle t [mm] \in J_{u} \cap J_{v} [/mm] zeigen soll, wenn doch u = v auf [mm] J_{u} \cap J_{v} [/mm] gilt, da sie doch beide max. lösungen von der DGL sind.
Irgendwie ist doch dann da ein Widerspruch.
Ich versteh das nicht so richtig....
Ich hoffe, du hilfst mir weiter.
LG, Mini
|
|
|
|
|
> Hallo MatthiasKr,
> erstmal vielen Dank für deine Hilfe. Leider versteh ich
> nicht ganz, was du geschrieben hast.
> Du hast gesagt:
>
> > zb. teil a): stimmen zwei lösungen in einem punkt aus
> > [mm]J_u\cap J_v[/mm] überein, so wähle diesen punkt als anfangswert
> > für ein AWP. Aus der Eindeutigkeit der Lösung folgt dann,
> > dass die lösungen auf dem gesamten Schnitt-Intervall gleich
> > sein müssen.
>
> Aber ich sollte doch zeigen: Ist u(t) [mm]\not=[/mm] v(t) für ein t
> [mm]\in J_{u} \cap J_{v},[/mm] so gilt u(t) [mm]\not=[/mm] v(t) für alle t
> [mm]\in J_{u} \cap J_{v}.[/mm]
> Also, dass die Lösungen auf [mm]J_{u} \cap J_{v}[/mm] ungleich
> sind...
Das ist nur scheinbar eine andere aussage. versuche mal, die aufgabe indirekt zu beweisen: die annahme ist dann, dass die lösungen nicht auf dem ganzen schnittintervall voneinander verschieden sind.
Gruß
Matthias
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 18:23 Mo 12.06.2006 | Autor: | Mini273 |
Hallo,
danke für deine Antwort.
Ich hab versucht die a) zu beweisen:
Annahme: u,v nicht auf ganz [mm] J_{u} \cap J_{v} [/mm] verschieden, d.h. es gibt ein [mm] t_{0} \in J_{u} \cap J_{v} [/mm] mit [mm] u(t_{0}) [/mm] = [mm] \lambda [/mm] und [mm] v(t_{0}) [/mm] = [mm] \lambda [/mm] (Anfangswert)
Dann folgt nach dem globalen Existenz und Eindeutigkeitssatz doch, dass das AWP x' = f(t,x), [mm] x(t_{0}) [/mm] = [mm] \lambda [/mm] genau eine max. Lösung besitzt.
Und das ist ein Widerspruch dazu, dass u und v max. Lösungen von x' = f(t,x) ist. Also ist die Annahme falsch und es folgt:
u(t) [mm] \not= [/mm] v(t) für alle t [mm] \in J_{u} \cap J_{v}
[/mm]
Stimmt das so, wie ich das gemacht habe?
Ich weiß nicht, wie ich das sonst geht.
Ich hoffe, du hilfst mir weiter.
Danke schön,
Mini
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 07:21 Do 15.06.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|