www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Lipschitz-stetigkeit prüfen
Lipschitz-stetigkeit prüfen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lipschitz-stetigkeit prüfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:53 Do 11.11.2010
Autor: gerani

Aufgabe
Man zeige (mit Angabe der Lipschitzkonstanten) oder wiederlege, dass

[mm] f(x,y)=\bruch{xy}{1+x^2+y^2} [/mm]
wobei [mm] x^2+y^2 \le [/mm] 4
Lipschitz-stetig ist.

Hallo allerseits,

ich hab schon den ganzen Tag an dieser Aufgabe herumprobiert aber ich komm leider auf kein Ergebnis. Ich würde intuitiv sagen, dass sie Lipschitz-stetig ist, das ist aber nur geraten. Ich hab ein paar Umformungen gemacht, und bin irgendwann auf

|f(x,y)-f(a,b)| [mm] \le [/mm] 5|xy-ab|

gekommen. Das sieht schon ganz nett aus, aber ich komm nicht weiter.

Hat jemand eine Idee?

Viele Grüße,

gerani :)

PS: Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: (aber leider keine Antwort gekriegt)

http://www.matheplanet.com/

        
Bezug
Lipschitz-stetigkeit prüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:35 Fr 12.11.2010
Autor: fred97


> Man zeige (mit Angabe der Lipschitzkonstanten) oder
> wiederlege, dass
>
> [mm]f(x,y)=\bruch{xy}{1+x^2+y^2}[/mm]
>  wobei [mm]x^2+y^2 \le[/mm] 4
>  Lipschitz-stetig ist.
>  Hallo allerseits,
>
> ich hab schon den ganzen Tag an dieser Aufgabe
> herumprobiert aber ich komm leider auf kein Ergebnis. Ich
> würde intuitiv sagen, dass sie Lipschitz-stetig ist, das
> ist aber nur geraten. Ich hab ein paar Umformungen gemacht,
> und bin irgendwann auf
>
> |f(x,y)-f(a,b)| [mm]\le[/mm] 5|xy-ab|


Das bringt Dir doch nichts !  


Du sollst entscheiden, ob es ein L [mm] \ge [/mm] 0 gibt mit:

  $|f(x,y)-f(a,b)| [mm] \le [/mm] L* ||(x,y)-(a,b)||$  für alle (x,y) und (a,b) mit $ [mm] x^2+y^2 \le [/mm] $ 4 , $ [mm] a^2+b^2 \le [/mm] $ 4


FRED

>  
> gekommen. Das sieht schon ganz nett aus, aber ich komm
> nicht weiter.
>
> Hat jemand eine Idee?
>  
> Viele Grüße,
>
> gerani :)
>  
> PS: Ich habe diese Frage auch in folgenden Foren auf
> anderen Internetseiten gestellt: (aber leider keine Antwort
> gekriegt)
>  
> http://www.matheplanet.com/


Bezug
                
Bezug
Lipschitz-stetigkeit prüfen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:52 Fr 12.11.2010
Autor: gerani

Hi Fred,

Die Definition von Lipschitzstetigkeit kann ich mittlerweile sehr gut, danke :)

ich kam dann doch damit weiter, dank eines Tipps in einem anderen Forum. Man muss einfach die Null addieren:

5|xy-ab| = 5|xy-ay+ay-ab| [mm] \le [/mm] 5(|xy-ay|+|ay-ab|)=5(|y||x-a|+|a||y-b|) [mm] \le [/mm] 5(2|x-a|+2|y-b|)
= 10 [mm] \parallel \vektor{x \\ y}-\vektor{a \\ b} \parallel_1 [/mm]

Grüße,

gerani

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]