www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Lipschitz-Konstante
Lipschitz-Konstante < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lipschitz-Konstante: Korrektur
Status: (Frage) beantwortet Status 
Datum: 11:17 Mo 22.06.2009
Autor: Blub2009

Aufgabe
Eine Funktipn [mm] f:U\to \IR [/mm] auf einem offenen Intervall U hat eine Lipschitz-Konstante L>0, falls für alle x,y [mm] \in [/mm] U gilt:  |f(x)-f(y)| [mm] \le [/mm] L|x-y| (A)
Beweise: Ist f differenzierbar mit beschränkter Ableitungsfunktion f`: U [mm] \to \IR, [/mm] so gilt (A) mit der Lipschitz- Konstanten L:=sup|f`(z)|. [mm] z\in [/mm] U

Guten Tag, ich habe die Aufgabe versucht und bin mir nicht sicher ob ich den Beweis richtig zu ende geführt habe.

voraussetzung:-Ableitung ist beschränkt und Diffbar.
[mm] \Rightarrow [/mm] es gibt ein M>0 sodass für jedes z gilt |f'(z)|<M aus den MWS folgt [mm] |f(x)-f(y)|\le [/mm] |f'(z)||x-y|<M|x-y| [mm] \Rightarrow [/mm] L:=sup|f'(z)|. [mm] z\in [/mm] U

        
Bezug
Lipschitz-Konstante: Antwort
Status: (Antwort) fertig Status 
Datum: 12:02 Mo 22.06.2009
Autor: Al-Chwarizmi


> Eine Funktion [mm]f:U\to \IR[/mm] auf einem offenen Intervall U hat
> eine Lipschitz-Konstante L>0, falls für alle x,y [mm]\in[/mm] U
> gilt:  |f(x)-f(y)| [mm]\le[/mm] L|x-y| (A)

>  Beweise: Ist f differenzierbar mit beschränkter
> Ableitungsfunktion f': U [mm]\to \IR,[/mm] so gilt (A) mit der
> Lipschitz- Konstanten L:=sup|f'(z)|. [mm]z\in[/mm] U

> Voraussetzung:-Ableitung ist beschränkt und Diffbar.
>  [mm]\Rightarrow[/mm] es gibt ein M>0 sodass für jedes z gilt
> |f'(z)|<M aus den MWS folgt [mm]|f(x)-f(y)|\le[/mm]
> |f'(z)||x-y|<M|x-y| [mm]\Rightarrow[/mm] L:=sup|f'(z)|. [mm]z\in[/mm] U


Hallo Blub2009,

du hast wohl die richtige Idee, aber die Darstellung
ist noch ausbaufähig.
Erst mal:  Es wird nicht vorausgesetzt, dass die
Ableitung f' differenzierbar sei, sondern dass f
differenzierbar und f' beschränkt sei.
Dann existiert das Supremum sup|f'(z)| als
obere Schranke für die Beträge der Tangenten-
steigungen. Man definiert:

      $\ [mm] L\,:=\ \underset{z\in U}{sup}\ [/mm] |f'(z)|$

Nun seien [mm] x,y\in [/mm] U, z.B. [mm] x\le [/mm] y . Nach dem MWS existiert
ein z mit [mm] x\le z\le [/mm] y , also auch [mm] z\in [/mm] U mit

        $\ f(x)-f(y)\ =\ f'(z)*(x-y)$

also auch

        $\ |f(x)-f(y)|\ =\ |f'(z)|*|x-y|$

Wegen der Definition von L ist natürlich $\ [mm] |f'(z)|\le [/mm] L$ und
damit

        $\ |f(x)-f(y)|\ =\ [mm] \underbrace{|f'(z)|}_{\ge 0\,;\,\le L}\underbrace{|x-y|}_{\ge 0}\ \le\ L*|x-y|\qquad\square$ [/mm]


Al-Chwarizmi





Bezug
                
Bezug
Lipschitz-Konstante: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:07 Mo 22.06.2009
Autor: Blub2009

Danke für die Antwort

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]