www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Linienintegral
Linienintegral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linienintegral: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:09 Di 20.03.2012
Autor: mike1988

Aufgabe
Man berechne das Linienintegral [mm] \integral_{c}{\overrightarrow{K} d\overrightarrow{x}} [/mm] über die angegebene Kurve C.

[mm] \overrightarrow{K} [/mm] = [mm] \vektor{y^3 \\ x^2}, [/mm] C ... Bogen der Parabel [mm] x=1-y^2 [/mm] von P(0,-1) bis Q(0,1)

Hallo!

Würde kurz einen "Denkanstoß" zu o. g. Aufgabe benötigen:

Prinzipiell weiß ich, wie man diese Integrale berechnen kann:

- Die Kurve C muss in Parameterform vorliegen!
- Die Parameter der Kurve (x, y) in den Vektor K einsetzen
- Den "eingesetzen" Vektor K mit der Ableitung (nach t) der Kurve skalar multiplizieren
- Integral lösen!

Mein Problem: Bis dato hatten wir die Kurve immer in Parameterform gegeben! Wie schaffe ich es nun bei o. g. Beispiel, den Parabelbogen in Parameterform zu ewandeln??

Besten Dank für eure Hilfe!

Mfg

        
Bezug
Linienintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 14:27 Di 20.03.2012
Autor: MathePower

Hallo  mike1988,

> Man berechne das Linienintegral
> [mm]\integral_{c}{\overrightarrow{K} d\overrightarrow{x}}[/mm] über
> die angegebene Kurve C.
>  
> [mm]\overrightarrow{K}[/mm] = [mm]\vektor{y^3 \\ x^2},[/mm] C ... Bogen der
> Parabel [mm]x=1-y^2[/mm] von P(0,-1) bis Q(0,1)
>  Hallo!
>  
> Würde kurz einen "Denkanstoß" zu o. g. Aufgabe
> benötigen:
>  
> Prinzipiell weiß ich, wie man diese Integrale berechnen
> kann:
>  
> - Die Kurve C muss in Parameterform vorliegen!
>  - Die Parameter der Kurve (x, y) in den Vektor K einsetzen
> - Den "eingesetzen" Vektor K mit der Ableitung (nach t) der
> Kurve skalar multiplizieren
>  - Integral lösen!
>  
> Mein Problem: Bis dato hatten wir die Kurve immer in
> Parameterform gegeben! Wie schaffe ich es nun bei o. g.
> Beispiel, den Parabelbogen in Parameterform zu ewandeln??
>  


Setze y=t, dann ist

[mm]C\left(t\right)=\pmat{1-t^{2} \\ t}, \ -1 \le t \le 1[/mm]



> Besten Dank für eure Hilfe!
>  
> Mfg


Gruss
MathePower

Bezug
                
Bezug
Linienintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 Di 20.03.2012
Autor: mike1988

Hallo!

Besten Dank für die schnelle Hilfe!

Habe mir es schon so gedacht, war mir allerdings nicht sicher!

Somit muss ich ja dan in den Grenzen von -1 bis 1 integrieren!

Kann es sein, das als Ergebniss 0 heraus kommt??

IN der vorlesung haben wir gelernt, dass entlang einer geschlossenen Kurve keine Arbeit verrichtet wird, d.h.: das Ergebniss 0 sein kann! Diese Kurve ist allerdings nicht geschlossen!?!?

DANKE

Bezug
                        
Bezug
Linienintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 14:41 Di 20.03.2012
Autor: fred97


> Hallo!
>  
> Besten Dank für die schnelle Hilfe!
>  
> Habe mir es schon so gedacht, war mir allerdings nicht
> sicher!
>  
> Somit muss ich ja dan in den Grenzen von -1 bis 1

Ja


> integrieren!
>  
> Kann es sein, das als Ergebniss 0 heraus kommt??

nein.

FRED

>  
> IN der vorlesung haben wir gelernt, dass entlang einer
> geschlossenen Kurve keine Arbeit verrichtet wird, d.h.: das
> Ergebniss 0 sein kann! Diese Kurve ist allerdings nicht
> geschlossen!?!?
>  
> DANKE


Bezug
                                
Bezug
Linienintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:08 Di 20.03.2012
Autor: mike1988

Alles klar! Habe die Parameterdarstellung der Parabel eingesetzt und nicht die Ableitung davon!

Stimmt das Ergebnis [mm] \bruch{4}{15} [/mm] ??

DANKE



Bezug
                                        
Bezug
Linienintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:09 Di 20.03.2012
Autor: fred97


> Alles klar! Habe die Parameterdarstellung der Parabel
> eingesetzt und nicht die Ableitung davon!
>  
> Stimmt das Ergebnis [mm]\bruch{4}{15}[/mm] ??

Ja

FRED

>  
> DANKE
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]