www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maple" - Linearkombination - Maple
Linearkombination - Maple < Maple < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maple"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linearkombination - Maple: Frage
Status: (Frage) beantwortet Status 
Datum: 22:10 So 07.11.2004
Autor: Christinchen

Hallo ich habe folgende Aufgabe:

Pruefen auf lineare Unabhaengigkeit (4 Punkte)

Wir definieren drei Vektoren.

> v1:=<1,2,1,5>;
> v2:=<1,2,1,2>;
> v3:=<2,4,2,7>;

                            
Mit Maple koennen wir auf einfache Weise Linearkombinationen von Vektoren berechnen, z.B. mit den Koeffizienten 1,-2,4 ....

> 1*v1-2*v2+4*v3;


oder auch mit den Unbestimmten a,b,c

> a*v1+b*v2+c*v3;

                       [  a + b + 2 c  ]

                       [2 a + 2 b + 4 c]

                       [  a + b + 2 c  ]

                       [5 a + 2 b + 7 c]

Um nun zu pruefen, ob die Vektoren v1,v2 und v3 linear unabhaengig sind, fassen wir diese Linearkombination  zusammen (das Zeichen % im Argument von evalm() bedeutet, dass an dessen Stelle die letzte Eingabe gesetzt wird, hier also die Linearkombination)

> L:=evalm(%);

L := [a + b + 2 c, 2 a + 2 b + 4 c, a + b + 2 c, 5 a + 2 b + 7 c]

Wir setzen die linken Seiten gleich Null und lassen diese Gleichungen von Maple loesen. (Was ist wohl L[1]?)

> solve({L[1]=0,L[2]=0,L[3]=0,L[4]=0},{a,b,c});

                    {b = -c, a = -c, c = c}

SO bis dahin kein Problem:

Aber wie gehts weiter?? Ich habe keine Ahnung welcher befehl das sein könnte

Geben Sie nun drei unterschiedliche Linearkombinationen von v1,v2 und v3 an, die den Nullvektor ergeben. (3 Punkte)


Sind die Vektoren v1, v2 und v3 linear unabhaengig? (1 Punkt)



Vielen Dank

Christin


        
Bezug
Linearkombination - Maple: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:24 Fr 12.11.2004
Autor: Stefan

Hallo Christinchen!

Es tut mir sehr leid, aber leider konnte dir offenbar keiner im vorgegebenen Zeitrahmen weiterhelfen.

Vielleicht versuchst du es mal  []hier oder []hier, falls das Problem doch noch aktuell ist?

Liebe Grüße
Stefan

Bezug
        
Bezug
Linearkombination - Maple: Tipp zu Freiheitgraden
Status: (Antwort) fertig Status 
Datum: 12:30 Di 16.11.2004
Autor: Peter_Pein

Liebe Christin,

wenn Du bei der Lösung von Gleichungssystemen auf Gleichungen wie c=c stößt, dann ist diese Gleichung offenbar für jedes von Dir gewählte c gültig. Die drei Beispiele, die gefordert waren, können also z.B. für c=1, c=2, c=3 angegeben werden (a und b ergeben sich ja aus c).
Manchmal erhält man bei Computeralgebra Systemen auch Gleichungen wie 1=1 oder gleich "true" als Teil einer Lösung. Dann fehlt in den anderen Gleichungen, die zurückgegeben wurden aber mindestens eine der Variablen, für die gelöst werden sollte. Diese können dann frei aus dem Definitionsbereich gewählt werden. Deshalb spricht man auch vom Freiheitsgrad oder von unterbestimmten Gleichungssystemen (als Tipp für das Schlagwortregister von Mathebüchern).

Alles Gute,
Peter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maple"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]