www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Lineares Gleichungssystem
Lineares Gleichungssystem < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineares Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:44 Do 25.06.2009
Autor: Owen

Aufgabe
Gegeben ist das lineare Gleichungssystem
[mm] a*x_{1}+b*x_{2}-b*x_{3}=a [/mm]
[mm] x_{1}+a*x_{2}=1 [/mm]
[mm] x_{2}=1 [/mm]

a) Für welche Werte der Parameter [mm] a,b\in \IR [/mm] ist dieses System eindeutig lösbar?
b) Im Falle der eindeutigen Lösbarkeit bestimmen Sie die Lösung mit Hilfe der Cramerschen Regel.
c) Überprüfen Sie die Lösbarkeit dieses Systems für den Fall b=0. Bestimmen Sie gegebenenfalls die allgemeine Lösung.

Hallo Leute,
also eindeutig lösbar ist ein Gleichungssystem, wenn Rg(A)=m= Rg(a|b) [mm] \wedge [/mm] n=m. Also es gilt bei dieser Aufgabe doch n=m=3. Diese Bedingung wäre also bereits erfüllt. Jetzt müsste man sich die erste Bedingung noch einmal anschauen. Rg(A) müsste 3 sein. Dies ist der Fall, wenn [mm] a\not=0 \wedge b\not=0. [/mm] Seht ihr das ähnlich? Oder müsste man hier anders vorgehen?

        
Bezug
Lineares Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 00:37 Fr 26.06.2009
Autor: barsch

Hi,

einfacher wird es, wenn du Matrixschreibweise verwendest. Das LGS hat dann die folgende Form

[mm] \pmat{ a & b & -b \\ 1 & a & 0\\ 0 & 1 & 0}*\vektor{x_1 \\ x_2 \\x_3}=\vektor{a \\ 1 \\1} [/mm]

Gauß:

[mm] \to \pmat{ a & b & -b \\ 0 & a^2-b & b\\ 0 & 1 & 0}*\vektor{x_1 \\ x_2 \\x_3}=\vektor{a \\ 0 \\1} [/mm]

[mm] \to \pmat{ a & b & -b \\ 0 & a^2-b & b\\ 0 & 0 & -b}*\vektor{x_1 \\ x_2 \\x_3}=\vektor{a \\ 0 \\a^2-b} [/mm]

Jetzt kannst dir die Frage stellen

> a) Für welche Werte der Parameter $ [mm] a,b\in \IR [/mm] $ ist dieses System eindeutig lösbar?

(Ich hoffe, ich habe mich nicht verrechnet!)

Gruß barsch

Bezug
        
Bezug
Lineares Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 08:35 Fr 26.06.2009
Autor: fred97

Was sich der Aufgabensteller wohl dabei gedacht hat ...?

Aus


$ [mm] a\cdot{}x_{1}+b\cdot{}x_{2}-b\cdot{}x_{3}=a [/mm] $
$ [mm] x_{1}+a\cdot{}x_{2}=1 [/mm] $
$ [mm] x_{2}=1 [/mm] $

folgt sofort:

            [mm] $x_2 [/mm] = 1, [mm] x_1 [/mm] = 1-a, [mm] bx_3 [/mm] = [mm] b-a^2$ [/mm]

und man kann alles ablesen.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]