www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Linearer Raum
Linearer Raum < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linearer Raum: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:11 Do 26.12.2013
Autor: Ymaoh

Aufgabe
Seien n [mm] \in \IN, P_{n} [/mm] die Menge aller reellen Polynome vom Grad kleiner oder gleich n. Sind p,q [mm] \in P_{n}, [/mm] also:

p(x) = [mm] \summe_{k=0}^{n} a_{k}x^k [/mm]

q(x) = [mm] \summe_{k=0}^{n} b_{k}x^k [/mm]

x [mm] \in \IR [/mm] a,b [mm] \in \IR [/mm] geeignet (k [mm] \in [/mm] {0,1,...,n}

So seien p+q und [mm] \lambda [/mm] p definiert durch:

(p+q)(x) = p(x) + q(x) = [mm] \summe_{k=0}^{n} (a_{k} [/mm] + [mm] b_{k} [/mm] ) [mm] x^k [/mm]

[mm] (\lambda [/mm] p)(x) = [mm] \lambda [/mm] p(x)

Damit ist auf [mm] P_{n} [/mm] die Struktur eines linearen Raumes über [mm] \IR [/mm] erklärt.

Ich habe das obigen Beispiel aus einem Lehrbuch übernommen. (von Rainer Wüst)
Darunter steht in Klammern (Beweis?) Das ist aber keine direkte Aufgabe in diesem Buch, also gibt es auch keine Lösung, in der ich nachschauen könnte. Die Lösung würde mich aber dennoch interessieren.

Die Vorraussetzungen für einen linearen Raum sind mir bekannt. Jetzt ist es aber doch so, dass die Erfüllung dieser Vorraussetzungen bereits in den Definitionen enthalten sind.
Also Beispiel Kommutativität:

(p+q)(x) = p(x) + q(x) = [mm] \summe_{k=0}^{n} (a_{k} [/mm] + [mm] b_{k} [/mm] ) [mm] x^k [/mm]
In der Summe stehen Skalare, also gilt die Addition für Skalare, und damit:
[mm] a_{k} [/mm] + [mm] b_{k} [/mm] = [mm] b_{k} [/mm] + [mm] a_{k} [/mm]
So verhält es sich ja auch mit allen anderen Vorraussetzungen.
Muss man das für einen Beweis so aufschreiben? Reicht das so? (Also, wenn ich das so für alle Bedingungen machen würde?)

        
Bezug
Linearer Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 14:57 Do 26.12.2013
Autor: UniversellesObjekt

Hi,

Ich schlage vor, zunächst zu zeigen, dass die Menge aller Polynome einen Vektorraum bildet, und dann zu zeigen, dass diese Menge hier einen Unterraum bildet.
Beides ist in der Tat trivial.

LG

Bezug
        
Bezug
Linearer Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 Do 26.12.2013
Autor: fred97

Zeige:

p,q [mm] \in P_n [/mm] und [mm] \lambda \in \IR \Rightarrow [/mm]  p+q, [mm] \lambda*p \in P_n. [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]