www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Linearer Operator und Spur
Linearer Operator und Spur < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linearer Operator und Spur: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:35 Sa 15.03.2014
Autor: dodo1924

Aufgabe
Sei V der Vektorraum der (2x2) Matrizen über [mm] \IR. [/mm]
Sei M := [mm] \pmat{ 1 & 2 \\ 3 & 4 } [/mm] und sei A aus V beliebig. Betrachte den linearen Operator T auf V mit T(A) := MA. Wie lautet die Spur von T?

Hi!

Die Matrix A habe ich folgend definiert:
[mm] \pmat{ a & b \\ c & d } [/mm]

Ich habe mir jetzt die Matrix MA ausgerechnet:
[mm] \pmat{ a+2c & 3a+4c \\ b+2d & 3b+4d } [/mm]

Jetzt weiß ich nicht, ob hier die Spur dieser Matrix gefragt ist?
Demnach wäre sie a + 2c +3b + 4d, oder?

        
Bezug
Linearer Operator und Spur: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Sa 15.03.2014
Autor: angela.h.b.


> Sei V der Vektorraum der (2x2) Matrizen über [mm]\IR.[/mm]
> Sei M := [mm]\pmat{ 1 & 2 \\ 3 & 4 }[/mm] und sei A aus V beliebig.
> Betrachte den linearen Operator T auf V mit T(A) := MA. Wie
> lautet die Spur von T?
>  Hi!
>  
> Die Matrix A habe ich folgend definiert:
>  [mm]\pmat{ a & b \\ c & d }[/mm]
>  
> Ich habe mir jetzt die Matrix MA ausgerechnet:
>  [mm]\pmat{ a+2c & 3a+4c \\ b+2d & 3b+4d }[/mm]
>  
> Jetzt weiß ich nicht, ob hier die Spur dieser Matrix
> gefragt ist?

Hallo,

nein, es ist nicht die Spur von MA gefragt.
Du weißt offenbar, was mit "Spur einer Matrix" gemeint ist.

Hier ist aber die Spur des linearen Operators T gesucht, und Du müßtest nun erstmal nachschlagen, wie die Spur einer linearen Abbildung bzw. Spur eines Endomorphismus definiert ist.
Tip: die Darstellungsmatrix von T spielt hier eine Rolle...

LG Angela


>  Demnach wäre sie a + 2c +3b + 4d, oder?


Bezug
                
Bezug
Linearer Operator und Spur: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:14 Sa 15.03.2014
Autor: dodo1924

Okay, die Darstellungsmatrix bezüglich der kanonischen Basis sieht so aus --> [mm] \pmat{ 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 3 & 0 & 4 & 0 \\ 0 & 3 & 0 & 4 } [/mm]

Also wäre die Spur 1+1+4+4 = 10 ??


Bezug
                        
Bezug
Linearer Operator und Spur: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 Sa 15.03.2014
Autor: angela.h.b.


> Okay, die Darstellungsmatrix bezüglich der kanonischen
> Basis sieht so aus --> [mm]\pmat{ 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 3 & 0 & 4 & 0 \\ 0 & 3 & 0 & 4 }[/mm]
>  
> Also wäre die Spur 1+1+4+4 = 10 ??

Ja, genau.

LG Angela

>  
>  


Bezug
                                
Bezug
Linearer Operator und Spur: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:11 Sa 15.03.2014
Autor: dodo1924

Cooool ^^

Kannst du mir vielleicht noch kurz erklären, warum das so ist?
Ich mein, ich habs gerade selbst berechnet, weiß aber nicht, wie ich dem Prof in der Übung erklären soll, was ich jetzt genau gemacht habe!

Bezug
                                        
Bezug
Linearer Operator und Spur: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Sa 15.03.2014
Autor: angela.h.b.


> Cooool ^^
>  
> Kannst du mir vielleicht noch kurz erklären, warum das so
> ist?
>  Ich mein, ich habs gerade selbst berechnet, weiß aber
> nicht, wie ich dem Prof in der Übung erklären soll, was
> ich jetzt genau gemacht habe!

Hallo,

das ist ja drollig...

Du sagst:

"Die Spur einens Endomorphismus ist definiert als die Spur seiner Darstellungsmatrix bzgl einer Basis.
Als Basis nehme ich ...
In den Spalten stehen dann die Bilder der Basisvektoren in Koordinaten bzgl dieser Basis.
Also sieht die Darstellungsmatrix so aus ..., und die Spur ist die Summe der Basiselemente, weil "Spur einer Matrix" so definiert ist."

LG Angela


Bezug
                                                
Bezug
Linearer Operator und Spur: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:42 Sa 15.03.2014
Autor: dodo1924

Danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]