www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Lineare Unabhängigkeit
Lineare Unabhängigkeit < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:05 Mo 03.12.2012
Autor: Julia191919

Aufgabe
Für welche [mm] \alpha [/mm] element der Reellen Zahlen sind [mm] \pmat{ 0 \\ 1 \\ \alpha }, \pmat{ \alpha \\ 0 \\ 1 },\pmat{ \alpha \\ 1 \\ 1+ \alpha } [/mm]

linear unabhängig?

Mit dem Determinantenverfahren habe ich bereits als Determinante D = 0 errechnet. Das bedeutet ja das lineare abhängigkeit vorliegt.

Nun komme ich nicht mehr weiter:
Ich habe dann eine Gleichung aufgestellt:

[mm] k_1 \pmat{ 0 \\ 1 \\ \alpha }+ k_2 \pmat{ \alpha \\ 0 \\ 1 }+ k_3\pmat{ \alpha \\ 1 \\ 1+ \alpha } =\pmat{ 0 \\ 0 \\ 0 } [/mm]

Und diese dann anschließend in 3 Gleichungen aufgespalten:

(I) [mm] k_2 \alpha [/mm] + [mm] k_3 \alpha [/mm] = 0
(II) [mm] k_1 [/mm] + [mm] k_3 [/mm] = 0
(III) [mm] k_1 \alpha [/mm] + [mm] k_2 [/mm] + [mm] k_3 [/mm] (1 + [mm] \alpha) [/mm] = 0


Stimmt der Ansatz  bis hierhin? und was muss ich dann weiter tun?

        
Bezug
Lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:13 Mo 03.12.2012
Autor: Walde

hi julia,

> Für welche [mm]\alpha[/mm] element der Reellen Zahlen sind [mm]\pmat{ 0 \\ 1 \\ \alpha }, \pmat{ \alpha \\ 0 \\ 1 },\pmat{ \alpha \\ 1 \\ 1+ \alpha }[/mm]
>  
> linear unabhängig?
>  Mit dem Determinantenverfahren habe ich bereits als
> Determinante D = 0 errechnet. Das bedeutet ja das lineare
> abhängigkeit vorliegt.

Da weiß ich jetzt nicht was du meinst. Die Determinante von welcher Matrix hast du berechnet? Von der aus den Vektoren oben? Kommt für jedes [mm] \alpha [/mm] Null raus? Dann hättest du ja schon deine Antwort und musst nicht mehr weiter machen.

>  
> Nun komme ich nicht mehr weiter:
>  Ich habe dann eine Gleichung aufgestellt:
>  
> [mm]k_1 \pmat{ 0 \\ 1 \\ \alpha }+ k_2 \pmat{ \alpha \\ 0 \\ 1 }+ k_3\pmat{ \alpha \\ 1 \\ 1+ \alpha } =\pmat{ 0 \\ 0 \\ 0 }[/mm]
>  
> Und diese dann anschließend in 3 Gleichungen
> aufgespalten:
>  
> (I) [mm]k_2 \alpha[/mm] + [mm]k_3 \alpha[/mm] = 0
>  (II) [mm]k_1[/mm] + [mm]k_3[/mm] = 0
>  (III) [mm]k_1 \alpha[/mm] + [mm]k_2[/mm] + [mm]k_3[/mm] (1 + [mm]\alpha)[/mm] = 0
>  
>
> Stimmt der Ansatz  bis hierhin? und was muss ich dann
> weiter tun?

Das ist der Ansatz aus der Schule, um auf lin. Unabh. zu prüfen, ist soweit in Ordnung. Du weißt doch sicher, wann dann lin.Unabh. gilt? Wenn es nur [mm] k_1=k_2=k_3=0 [/mm] als Lösung des Gleichungssystems gibt. Die Frage ist jetzt, für welche [mm] \alpha [/mm] das so ist. Versuch einfach mal das ganze wie immer aufzulösen.
Falls du durch irgendwas mit [mm] \alpha [/mm] dividierst oder mit irgendwas mit [mm] \alpha [/mm] multiplizierst, musst du halt sicherstellen, dass das mit Null nicht erlaubt ist, da muss man evtl. eine Fallunterscheidung machen.

LG walde

Bezug
                
Bezug
Lineare Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:24 Di 04.12.2012
Autor: Julia191919

Also irgendwie komm ich da nicht so recht weiter.
(III) Ist doch unabhängig von [mm] k_3 [/mm] erfüllt wenn [mm] \alpha [/mm] = -1 oder?


zum 1. Teil meiner Frage:
Ich habe die Vektoren als Matrix geschrieben und die Determinante errechnet, wobei 0 rauskommt, was ja heißt dass sie linear abhängig ist.

Bezug
                        
Bezug
Lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:33 Di 04.12.2012
Autor: Diophant

Hallo,

> Also irgendwie komm ich da nicht so recht weiter.
> (III) Ist doch unabhängig von [mm]k_3[/mm] erfüllt wenn [mm]\alpha[/mm] =
> -1 oder?

nein, da hast du offensichtlich unerlaubterweise die Variablen [mm] k_1 [/mm] und [mm] k_2 [/mm] zusammengefasst.

>
> zum 1. Teil meiner Frage:
> Ich habe die Vektoren als Matrix geschrieben und die
> Determinante errechnet, wobei 0 rauskommt, was ja heißt
> dass sie linear abhängig ist.

Ja, das ist richtig. Was aber bedeutet es für das ursprüngliche Problem?


Gruß, Diophant

Bezug
                                
Bezug
Lineare Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:50 Di 04.12.2012
Autor: Julia191919

Das heißt ja dass das Gleichungssystem dann nicht eindeutig lösbar ist.
Oben wurde ja gesagt, dass ich dann schon fertig mit der Aufgabe wäre, nur mir ist irgendwie nicht so recht klar warum.

Bezug
                                        
Bezug
Lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:53 Di 04.12.2012
Autor: fred97


> Das heißt ja dass das Gleichungssystem dann nicht
> eindeutig lösbar ist.
>  Oben wurde ja gesagt, dass ich dann schon fertig mit der
> Aufgabe wäre, nur mir ist irgendwie nicht so recht klar
> warum.

Wenn das LGS



$ [mm] k_1 \pmat{ 0 \\ 1 \\ \alpha }+ k_2 \pmat{ \alpha \\ 0 \\ 1 }+ k_3\pmat{ \alpha \\ 1 \\ 1+ \alpha } =\pmat{ 0 \\ 0 \\ 0 } [/mm] $

nicht eindeutig lösbar ist, so gibt es eine Lösung [mm] (k_1,k_2,k_3) \ne [/mm] (0,0,0)

FRED


Bezug
                                                
Bezug
Lineare Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:06 Di 04.12.2012
Autor: Julia191919

Ich komme aber irmmmer noch nicht drauf wie ich diese [mm] \alpha [/mm] rausbekomme :(

Bezug
                                                        
Bezug
Lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:27 Di 04.12.2012
Autor: Diophant

Hallo,

> Ich komme aber irmmmer noch nicht drauf wie ich diese
> [mm]\alpha[/mm] rausbekomme :(

vielleicht arbeistest du die Definition der Linearen Unabhängigkeit nochmals durch?

Es ist ja so, dass die Determinate unabhängig von [mm] \alpha [/mm] gleich Null ist. Und in der höheren Mathematik ist es halt nicht immer so, dass man für eine Variable einen festen Wert ausrechnet...


Gruß, Diophant


Bezug
                                                                
Bezug
Lineare Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:24 Di 04.12.2012
Autor: Julia191919

Ich stehe wirklich auf dem Schlauch bei dieser Aufgabe. Könnte mir vlt jemand nen Ansatz geben wie ich auf die Lösung kommen kann..

Bezug
                                                                        
Bezug
Lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 10:32 Di 04.12.2012
Autor: reverend

Hallo Julia,

Du hast die Antwort schon ganz am Anfang selbst gefunden.

> Ich stehe wirklich auf dem Schlauch bei dieser Aufgabe.
> Könnte mir vlt jemand nen Ansatz geben wie ich auf die
> Lösung kommen kann..

Du hast doch die Determinante berechnet und ermittelt, dass die - ganz unabhängig von [mm] \alpha [/mm] - immer Null ist.

Das heißt, dass die drei Vektoren für kein [mm] \alpha [/mm] linear unabhängig sind. Und das ist die Lösung der Aufgabe.

Man kann das übrigens auch ohne Determinante leicht zeigen:

[mm] \vektor{0\\1\\ \alpha}+\vektor{\alpha\\0\\1}=\vektor{\alpha\\1\\1+\alpha} [/mm]

Das heißt auch: Du kannst kein [mm] \alpha [/mm] ermitteln.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]