www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Lineare Unabhängigkeit
Lineare Unabhängigkeit < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Unabhängigkeit: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:59 Mo 18.05.2015
Autor: rsprsp

Aufgabe
Sei V ein [mm] \IK [/mm] Vektorraum, [mm] {x_{1}, . . . , x_{r}} [/mm] ⊆ V linear unabhängig. Zeige:
a) [mm] {x_{1}, . . . , x_{i-1}, x_{i} + x_{j} , x_{i+1}, . . . , x_{r}} [/mm] mit i, j ∈ {i, . . . , r} ist linear unabhängig
b) [mm] {x_{1}, . . . , x_{i-1}, λx_{i}, x_{i+1}, . . . , x_{r}} [/mm] mit 0 [mm] \not= [/mm] λ ∈ K, i ∈ {i, . . . , r} ist linear unabhängig

a)
Annahme [mm] {x_{1}, . . . , x_{i-1}, x_{i} + x_{j} , x_{i+1}, . . . , x_{r}} [/mm] sind linear abhängig

Es gibt [mm] (a_{1},a_{2},...,a_{r}) \not= [/mm] (0,0,...,0) mit [mm] a_{i}\in\IK [/mm] mit [mm] a_{1}x_{1}+a_{2}x_{2}+...+a_{i}(x_{i}+x_{j})+..+a_{r}x_{r} [/mm] = 0
also [mm] a_{1}x_{1}+a_{2}x_{2}+...+a_{i}x_{i}+a_{i}x_{j}+..+a_{r}x_{r} [/mm] = 0

Wenn [mm] (a_{1},a_{2},...,a_{i},a_{i},...,a_{r}) \not= [/mm] (0,0,...,0) heißt, dass [mm] {x_{1}, . . . , x_{i-1}, x_{i} + x_{j} , x_{i+1}, . . . , x_{r}} [/mm] linear abhängig sind also ein Widerspruch zur Voraussetzung.




b)Annahme [mm] {x_{1}, . . . , x_{i-1}, \lambda x_{i} , x_{i+1}, . . . , x_{r}} [/mm] sind linear abhängig

Es gibt [mm] (a_{1},a_{2},...,a_{r}) \not= [/mm] (0,0,...,0) mit [mm] a_{i}\in\IK [/mm] mit [mm] a_{1}x_{1}+a_{2}x_{2}+...+a_{i}\lambda x_{i}+..+a_{r}x_{r} [/mm] = 0

Da [mm] b_{i}:= a_{i}\lambda [/mm] als Produkt 2er Elemente von [mm] \IK [/mm] wieder in [mm] \IK [/mm] liegt, folgt

[mm] a_{1}x_{1}+a_{2}x_{2}+...+b_{i} x_{i}+..+a_{r}x_{r} [/mm] = 0      
Wenn [mm] (a_{1},a_{2}, ...,b_{1},.....a_{r}) [/mm] ≠ (0,0,.....0) (***) heisst das, dass [mm] {x_{1}, x_{2}, ....,x_{r}} [/mm] lin. abh. sind.

Also ein Widerspruch zur Voraussetzung. q.e.d.

Nun noch zu (***).

Wenn [mm] a_{i} [/mm] = 0, ist mindestens ein [mm] a_{j} [/mm] ≠ 0, mit j≠i. (***) ist erfüllt.

Wenn [mm] a_{i} [/mm] ≠ 0 ==> [mm] \lambda [/mm] * [mm] a_{i} [/mm] ≠ 0, da [mm] \lambda≠0 [/mm] vorausgesetzt wurde. Somit ist (***) auch erfüllt.


Sind die Beweise richtig ? Kann mich mal jemand korrigieren und schreiben was ich falsch mache ?

        
Bezug
Lineare Unabhängigkeit: Ad a)
Status: (Antwort) fertig Status 
Datum: 09:27 Di 19.05.2015
Autor: Ladon

Hallo rsprsp,

eigentlich nutzt du hier keinen Widerspruchsbeweis, sondern einen indirekten Beweis der Form
[mm] $$(A\Rightarrow B)\gdw (\neg B\Rightarrow \neg [/mm] A)$$ Mach dir den Unterschied einmal klar ([]vgl. Beweisprinzipien). Da ich wenig Zeit habe, erst mal nur eine Antwort zu a). Wenn ich gleich noch Zeit finde, kann ich gerne auch b) beantworten.
Dein Beweis zu a) ist von der Idee her vielleicht richtig. Ich würde nur folgendes ändern:

a) Annahme [mm]{x_{1}, . . . , x_{i-1}, x_{i} + x_{j} , x_{i+1}, . . . , x_{r}}[/mm] mit [mm] $i,j\in\{1,...,r\}$ [/mm] sind linear abhängig.
Unterscheide $i=j$ und [mm] $i\neq [/mm] j$.
Für $i=j$ sind wir fertig, denn dann folgt direkt durch [mm] \overline{a}_i:=2a_i, [/mm] dass [mm]a_{1}x_{1}+a_{2}x_{2}+...+\overline{a}_{i}x_{i}+..+a_{r}x_{r}=0[/mm], also [mm] x_1,...,x_r [/mm] linear abhängig.
Für [mm] $i\neq [/mm] j$ nehmen wir o.E. $i<j$ an. Dann gibt es [mm](a_{1},a_{2},...,a_{r}) \not=[/mm] (0,0,...,0) mit [mm]a_{i}\in\IK[/mm] mit [mm]a_{1}x_{1}+a_{2}x_{2}+...+a_{i}(x_{i}+x_{j})+...+a_jx_j+...+a_{r}x_{r}=0[/mm], was zu  
[mm]a_{1}x_{1}+a_{2}x_{2}+...+a_{i}x_{i}+...+(a_{i}+a_j)x_{j}+..+a_{r}x_{r}=0[/mm] äquivalent ist. Setze [mm] $\overline{a}_j:=(a_{i}+a_j)$. [/mm] Dann folgt analog zu obiger Argumentation, dass [mm] x_1,...,x_r [/mm] linear abhängig sind.

MfG
Ladon


Bezug
        
Bezug
Lineare Unabhängigkeit: Ad b)
Status: (Antwort) fertig Status 
Datum: 16:28 Di 19.05.2015
Autor: Ladon

Den Beweis zu b) würde ich so gelten lassen.
Allerdings sei noch mal auf den Unterschied zwischen Beweis durch Widerspruch und indirekten Beweis hingewiesen! (s.o.)

MfG
Ladon

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]