www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Lineare Teilräume
Lineare Teilräume < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Teilräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:17 Mi 17.11.2010
Autor: Lotl89

Aufgabe
Lineare Teilräume

Sind die folgenden Mengen Teilräume des [mm] R^2 [/mm] ?
A = [mm] span{\vektor{0 \\ 1}} [/mm] U [mm] span{\vektor{1 \\ 0}} [/mm]
B = {v [mm] \in R^2 [/mm] : 2*v1 − v2 = −1},
C = {v [mm] \in R^2 [/mm] : 2*v1 − v2 = 0}.

(a) Zeichnen Sie die Mengen A, B und C.

(b) Beantworten und beweisen Sie Ihre Behauptung.

Antwort:
A, B, C ist Teilraum ist / ist nicht Teilraum

Hallo, mir wurde heute die Aufgabe zur Lösung gestellt und ich habe keine Ahnung wie ich hier rangehen soll... habe das Thema auch nicht wirklich verstanden.

Auf anhieb würde ich sagen, dass A B und C alle Teilräume von [mm] R^2 [/mm] sind, da sie ja nur x und y - werte haben....

soll ich B und C dann einfach als normale geraden in ein koordinatensystem zeichnen? aber was mache ich dann bei A?

vielen dank schon mal für die hilfe

        
Bezug
Lineare Teilräume: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 Mi 17.11.2010
Autor: schachuzipus

Hallo Lotl89,


> Lineare Teilräume
>  
> Sind die folgenden Mengen Teilräume des [mm]R^2[/mm] ?
>  A = [mm]span{\vektor{0 \\ 1}}[/mm] U [mm]span{\vektor{1 \\ 0}}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  B = {v [mm]\in R^2[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

: 2*v1 − v2 = −1},

>  C = {v [mm]\in R^2[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

: 2*v1 − v2 = 0}.

>  
> (a) Zeichnen Sie die Mengen A, B und C.
>  
> (b) Beantworten und beweisen Sie Ihre Behauptung.
>  
> Antwort:
>  A, B, C ist Teilraum ist / ist nicht Teilraum
>  Hallo, mir wurde heute die Aufgabe zur Lösung gestellt
> und ich habe keine Ahnung wie ich hier rangehen soll...
> habe das Thema auch nicht wirklich verstanden.
>  
> Auf anhieb würde ich sagen, dass A B und C alle Teilräume
> von [mm]R^2[/mm] sind, da sie ja nur x und y - werte haben....

Nein, wieso sollte das eine Begründung für "Teilraum sein" sein??

In einem (Unter-/Teil-)(Vektor-)Raum muss immer der Nullvektor drin sein, hier also [mm]\vektor{0\\ 0}[/mm]

Ist der in [mm]B[/mm] ?

Für  [mm]A[/mm] und [mm]C[/mm] ist der Nullvektor drin, prüfe dort die anderen beiden Unterraumkriterien ..

>  
> soll ich B und C dann einfach als normale geraden in ein
> koordinatensystem zeichnen? [ok]

Genau, nenne vllt. temporär [mm]v_1=x[/mm] und [mm]v_2=y[/mm], dann bist du "näher" am "normalen" Koordinatensystem ;-)

> aber was mache ich dann bei A?

Na, was ist denn der [mm]\operatorname{span}\left(\vektor{0\\ 1}\right)[/mm] ?

Doch alle (reellen) Vielfachen der 2.Komponente (also die y-Achse (oder hier die [mm]v_2[/mm]-Achse))

Und der andere Spann?

Also die Vereinigung?

Dies ist kein UVR des [mm]\IR^2[/mm]

Widerlege durch ein Gegenbsp. die Abgeschlossenheit bzgl. Vektoraddition.

>  
> vielen dank schon mal für die hilfe

Gruß

schachuzipus


Bezug
                
Bezug
Lineare Teilräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:39 Mi 17.11.2010
Autor: Lotl89

hallo,
welche sind denn die beiden anderen unterraumkriterien?
springt bei A dann also auch einfach eine gerade heraus oder spannen beide vektoren eine ebene auf? ich kann das nicht wirklich sehen.

danke im voraus.

Bezug
                        
Bezug
Lineare Teilräume: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 Mi 17.11.2010
Autor: schachuzipus

Hallo nochmal,


> hallo,
>  welche sind denn die beiden anderen unterraumkriterien?

Das nachzuschlagen in deinen Aufzeichnungen oder sonst irgendwo ist doch wohl deine Aufgabe ...

>  springt bei A dann also auch einfach eine gerade heraus
> oder spannen beide vektoren eine ebene auf?

Weder noch.

Der Spann des ersten Vektors ist die y-Achse (oder [mm] v_2-Achse), [/mm] der des zweiten entsprechend die andere Koordinatenachse.

A ist also das Koordinatenkreuz und das ist kein UVR des [mm]\IR^2[/mm], wie ich oben schon angedeutet habe ...


> ich kann das
> nicht wirklich sehen.

Jetzt aber!

>  
> danke im voraus.

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]