www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe-Software" - Lineare Interpolation
Lineare Interpolation < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe-Software"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Interpolation: Selbststudium
Status: (Frage) überfällig Status 
Datum: 15:37 Mi 18.11.2009
Autor: matheja

Aufgabe
Hallo Leute.Ich bin am berarbeiten meiner matlab-aufgaben und stöße grad auf eine aufgabe wo ich probleme habe.

Die Aufgabe lautet:

Gegeben seien die vier Datenpunkte (x1; y1); (x1; y2); (x2; y1); (x2; y2) mit x1 < x2; y1 < y2 und die vier Werte [mm] q_{i;j} [/mm]  i; j = 1; 2. Gesucht ist eine bilineare Interpolationsfunktion
p(x; y) = [mm] b_{1} [/mm] + [mm] b_{2}x [/mm] + [mm] b_{3}y [/mm] + [mm] b_{4}xy [/mm]
mit
p(xi; yj) = [mm] q_{i;j }; [/mm] i; j = 1; 2:
(a) Zeigen Sie, dass die obige Aufgabe eindeutig losbar ist und bestimmen Sie die Koeffezienten bi.
(b) Ist die Aufgabe auch fur den Fall x1 = x2 immer losbar? Begrunden Sie Ihre Antwort.
(c) Leiten Sie aus Ihrer Losung, den in der Vorlesung vorgestellten Spezialfall ab.

zu (c): Der Spezialfall aus der Vorlesung:

I(x)= [mm] \summe_{i=1}^{n}a_{j}*b{j}x [/mm]
[mm] b_{j}=b_{0} b_{0}(x-j) [/mm]  mit [mm] b_{0}(x) [/mm] mit
[mm] b_{0}(x)=\begin{cases} 1+x, & \mbox{für } x \mbox{ elemt (-1,0]} \\ 1-x, & \mbox{für } x \mbox{elemnt (0,1]} \end{cases} [/mm] sonst 0.



zu a):
Das Gleichungssystem ist genau dann eindeutig lösbar, wenn der Wert der Determinante der Koeffizientenmatrix ungleich Null ist. Ist der Wert jedoch gleich Null, hängt die Lösbarkeit von den Werten der Nebendeterminanten ab.

Allerdings komm ich mit den aufgabe nicht klar weil ich mir die gleichung nicht aufschreiben kann, d.h auf so eine form bringen kann:
x + 2y = 4
2x − y = 3
=> x=2 und y=1 höchstens eine Lösung=> eindeutig lösbar


ich kann mit der obigen notation anfangen
wie sieht mein LGS aus
ach ich bin einfach nur verwirrt :(
helft ihr mir?


        
Bezug
Lineare Interpolation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:33 Mi 18.11.2009
Autor: matheja

Das ist Grundproblem, das ich habe, das nicht weiß, wie das LGS aussieht.

echt keiner eine idee

Bezug
        
Bezug
Lineare Interpolation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Fr 20.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe-Software"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]