www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Lineare Gleichungssysteme
Lineare Gleichungssysteme < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Gleichungssysteme: Gauß Verfahren
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:36 So 03.10.2010
Autor: Schmetterling3

Aufgabe
7x + 11y + 13z = 0
x -        y -      z = 1
2x +   3y +   4z = 0
9x + 10y + 11z = 0

Ich wollte fragen, ob mir bitte jemand bei dem Lösen des Gleichungssystems helfen könnte, da ich durch die 4 Gleichungen und nur 3 Variablen total verwirrt bin...:(

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lineare Gleichungssysteme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:38 So 03.10.2010
Autor: Blech

Hi,

wieso fängst Du nicht ganz normal an und schaust, wo Du wirklich hängen bleibst?

ciao
Stefan

Bezug
                
Bezug
Lineare Gleichungssysteme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:01 So 03.10.2010
Autor: Schmetterling3

ich habe angefangen, aber das problem ist, dass ich jetzt eine gleichung mit 4z=6 und 2z=16 habe und da komm ich nicht weiter....

Bezug
                        
Bezug
Lineare Gleichungssysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 12:35 Mo 04.10.2010
Autor: Blech

Hi,

überleg Dir mal, was genau Du tun willst:

Du suchst Werte für x, y und z, die alle 4 Gleichungen erfüllen. Gibt es einen Wert für z, der gleichzeitig 4z=6 und 2z=16 erfüllt?
Nein. Also gibt es auch keine Lösung.

Ein Gleichungssystem ist lösbar, wenn keine der an x, y und z gestellten Bedingungen "inkompatibel" sind. Je mehr Gleichungen Du hast, desto mehr Möglichkeiten gibt's, daß sie das sind. Allerdings geht das auch in weniger, Bsp.:

x+y+z=1
x=1
y+z=1

3 Gl, 3 Unbekannte, keine Lösung

Umgekehrt ist

x+y+z=3
x=1
y=1

natürlich eindeutig lösbar. Das ändert sich auch nicht, wenn ich eine "nutzlose" Bedingung hinzufüge:

x+y+z=3
x=1
y=1
x+z=2

4 Gleichungen, 3 Unbekannte, eine Lösung

Das Vorgehen ist immer das gleiche, unabhängig von der Anzahl der Gleichungen.

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]