www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Lineare Gleichungssysteme
Lineare Gleichungssysteme < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Gleichungssysteme: Benötige Hilfe
Status: (Frage) beantwortet Status 
Datum: 21:27 Di 10.05.2005
Autor: Blume123

Hallo!
Ich habe hier zwei Aufgaben, bei denen ich nicht so ganz durchblicke.

1. In den folgenden Zahlenrätseln ins n eine dreistellige Zahl. Bestimmen sie jeweils alle natürlichen Zahlen mit den angegebenen Eigenschaftem!
a) Die Quersumme von n ist 12. Schreibt man die Ziffern von n in umgekehrter Reihenfolge, so ergibt sich 24 weniger als das Dreifache von n.
b) Die letzte Ziffer ist um 2 größer als die erste. Lässt man die erste Ziffer weg und multipliziert mit 8, so erhäl man 15 mehr als n.

zu a): also man könnte ja vielleicht jeweils die einzelnen Zahlen von n mit a, b und c benennen.
Dann wäre es so:
a+b+c= 12
dann kommt schon das erste Problem auf: 3* n= cba-24 oder wie, aber damit kann ich ja kein Gleichungssystem aufstellen?!

zu b) 2+c=a und bc*8=15+n
aber wie mache ich dann weiter?


2. Bestimmen sie eine Darstellung der Lösungsmenge L und prüfen sie, ob T=L gilt.
2a+4b-c-d=0
a+b-2c+2d=0
T=(r(-7;3;-2;0/r Element aus R)

Zur Darstellung der Lösungsmenge komme ich wohl:

L= (-3/4 + 1,75 s+1/2 r; 3/2 - 2,5 s; r; s)
Und wie mache ich dann weiter? Stimmt mein Ergebnis überhaupt?

Würde mich echt freuen, wenn mir jemand helfen kann
LG Blume

        
Bezug
Lineare Gleichungssysteme: Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 21:47 Di 10.05.2005
Autor: informix

Hallo Blume,
> Hallo!
>  Ich habe hier zwei Aufgaben, bei denen ich nicht so ganz
> durchblicke.

Du erhöhst die Wahrscheinlichkeit, dass sich jemand deiner Aufgaben annimmt, ungemein,
indem du für jede Aufgabe einen neuen Diskussionsstrang anfängst.
Lies bitte mal unsere Forenregeln durch!

> 1. In den folgenden Zahlenrätseln ins n eine dreistellige
> Zahl. Bestimmen sie jeweils alle natürlichen Zahlen mit den
> angegebenen Eigenschaftem!
>  a) Die Quersumme von n ist 12. Schreibt man die Ziffern
> von n in umgekehrter Reihenfolge, so ergibt sich 24 weniger
> als das Dreifache von n.
>  b) Die letzte Ziffer ist um 2 größer als die erste. Lässt
> man die erste Ziffer weg und multipliziert mit 8, so erhäl
> man 15 mehr als n.
>  
> zu a): also man könnte ja vielleicht jeweils die einzelnen
> Zahlen von n mit a, b und c benennen. [ok]
>  Dann wäre es so:
>  a+b+c= 12
>  dann kommt schon das erste Problem auf: 3* n= cba-24 oder [notok]
> wie, aber damit kann ich ja kein Gleichungssystem
> aufstellen?!
>  

n = 100a + 10b + c
3*n -24 = 100c + 10b + a ; die neue Zahl ist kleiner als 3n !

Mit dem Eisetzverfahren kannst du in der 2. Gleichung n ersetzen,
es bleibt eine Gleichung mit immer noch 3 Variablen.
Für zwei von ihnen setzt du mal probehalber jeweils eine natürliche Zahl ein und schaust mal, was dann für die dritte herauskommt.
Kommst du jetzt alleine weiter?

> zu b) 2+c=a und bc*8=15+n [notok]

hier ist a offenbar um 2 größer als c !

es gilt wieder n = 100a + 10b + c

> man die erste Ziffer weg und multipliziert mit 8, so erhält man 15 mehr als n.
>  aber wie mache ich dann weiter?

schaffst du's jetzt?


Bezug
        
Bezug
Lineare Gleichungssysteme: zu Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 22:42 Di 10.05.2005
Autor: zoe

Hallo Blume,
wenn du deine Lösung in eine der beiden Gleichungen einsetzt, dann kannst du überprüfen, ob die Lösung richtig ist.

Ich nehme einmal die zweite Gleichung mit deinem Ergebnis:

a + b - 2c + 2d = 0

(- [mm] \bruch{3}{4} [/mm] + 1,75s + [mm] \bruch{1}{2}r)+( \bruch{3}{2} [/mm] - 2,5s)- 2r + 2s = 0
-0,75 + 1,75s + 0,5r + 1,5 - 2,5s - 2r + 2s = 0
0,75 - 1,5r + 1,25s  [mm] \not= [/mm] 0

und damit nicht richtig.

Liebe Grüße von zoe



Bezug
                
Bezug
Lineare Gleichungssysteme: Ergänzung zu Frage 2 (LGS)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:44 Mi 11.05.2005
Autor: zoe

Hallo Blume,
mir ist eben aufgefallen, dass du noch eine zweite Frage gestellt hast.

Ich nehme an, dass du die Berechnung an und für sich des Lösungsvektors L richtig gemacht hast. Du hast 4 Unbekannte und 2 Gleichungen => du kannst 2 Variablen wählen und bekommst so den Lösungsvektor heraus.

Wenn du diesen Lösungsvektor L hast, dann bleibt noch die Teilaufgabe, ob der angegebene Vektor T, diesem Lösungsvektor L entspricht.

Ohne probiert zu haben, würde ich

L = T setzen. Dann hast du auf der einen Seite die Variable r und auf der anderen Seite die Variablen r und s. Dort musst du überprüfen, ob es ein s gibt, welches die Gleichung erfüllt.

Liebe Grüße von zoe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]