www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Lineare Gleichungen
Lineare Gleichungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Gleichungen: Rechnen mit zwei Variablen
Status: (Frage) beantwortet Status 
Datum: 20:31 Mi 23.09.2020
Autor: Stromberg

Aufgabe
Die Hälfte einer Zahl vermindert um das dreifache einer anderen Zahl ergibt 10.
>Stelle eine Gleichung mit zwei Variablen auf und gib mindestens zwei Lösungen an<

Hallo zusammen...ich und mein Stiefsohn üben mal wieder und ich möchte gerne mal überprüfen lassen ob wir richtig liegen...es ist super wie man in diesem Forum geholfen bekommt und Unterstützung findet :-)

Hier mal unser Vorgehen:

Aufstellen der Funktionsgleichung:
[mm] \bruch{1}{2}x-3y=10 [/mm]

Jetzt lösen wir auf nach y

[mm] \bruch{1}{2}x-3y=10 /-\bruch{1}{2}x [/mm]
[mm] -3y=-\bruch{1}{2}x+10 [/mm] /:(-3)
[mm] y=\bruch{1}{6}x-\bruch{10}{3} [/mm]

Ist dies soweit richtig aufgelöst?...oder hätte es eine einfachere Lösung gegeben?

Nun setzen wir für x Werte von 1-4 ein und erhalten somit sehr krumme Y-Werte...

Ich würde mich freuen, wenn mir jemand die Aufgabe und den entsprechenden Rechenweg überprüfen könnte.

Vielen Dank bereits im Voraus



        
Bezug
Lineare Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:18 Mi 23.09.2020
Autor: chrisno


>  ....
> Aufstellen der Funktionsgleichung:
> [mm]\bruch{1}{2}x-3y=10[/mm]

Damit ist die Gleichung aufgestellt.

>  
> Jetzt lösen wir auf nach y
>  
> [mm]\bruch{1}{2}x-3y=10 /-\bruch{1}{2}x[/mm]
>  [mm]-3y=-\bruch{1}{2}x+10[/mm]
> /:(-3)
>  [mm]y=\bruch{1}{6}x-\bruch{10}{3}[/mm]
>  
> Ist dies soweit richtig aufgelöst?

ja

...oder hätte es eine

> einfachere Lösung gegeben?

Taktisch halte ich das nicht für so geschickt, aber es geht auch so weiter:

>  
> Nun setzen wir für x Werte von 1-4 ein und erhalten somit
> sehr krumme Y-Werte...

Das ist ja erst einmal in Ordnung, krumme Zahlen sind auch Zahlen, die aber hier offensichtlich, wie auch sonst öfter, diskriminiert werden sollen.
Das Ziel ist also, "schöne" Werte für x und y zu bekommen.
Wenn x ein Vielfaches von 6 ist, dann wird der erste Summand schön, aber das [mm] $\br{10}{3}$ [/mm] stört noch.
Also weiter umformen
[mm]y=\bruch{1}{6}x-\bruch{20}{6}=\bruch{x-20}{6}[/mm]
Also: x soll eine Zahl sein, von der man 20 subtrahieren kann und das Ergebnis soll dann durch 6 teilbar sein. Da findet sich doch was.

Ich würde so vorgehen:
[mm]\bruch{1}{2}x-3y=10[/mm]
[mm]x-6y=20[/mm]
[mm]x=20+6y[/mm]
Nun setze ich für y 0, 1, -1, 2, ... ein.

Bezug
                
Bezug
Lineare Gleichungen: Gelöst
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:44 Mi 23.09.2020
Autor: Stromberg

Vielen herzlichen Dank....das ist natürlich wirklich deutlich besser gelöst!
Top Antwort...herzlichen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]