www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Lineare Gleichung
Lineare Gleichung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Mo 07.11.2005
Autor: Dine88

Hallo!

Ich hab da mal eine Frage. Wie kann man

a - 1
_____
a -  [mm] \bruch{1}{a} [/mm]    vereinfachen? Mein Lehrer kriegt

2
__
a + 1    raus, aber ich weiß nicht, wie er drauf kommt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lineare Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Mo 07.11.2005
Autor: mazi

Hallo!

Als erstes bildest du im Nenner den Hauptnenner von a und [mm] \bruch{1}{a} [/mm] und der ist neue Nenner lautet: [mm] \bruch{a^{2} -1}{a}. [/mm]

Den Nenner des Nenners bringst du nach oben. Wir haben also den neuen Bruch [mm] \bruch{a(a-1)}{a^{2}-1}. [/mm]

[mm] a^{2}-1 [/mm] = (a-1)(a+1) und du kannst den Bruch mit (a-1) kürzen und irgendwie komme ich auch gerade nicht auf die Antwort deines Lehrers. Also entweder hab ich jetzt einen Fehler gemacht, oder dein Lehrer?!

Maria

Bezug
                
Bezug
Lineare Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 Mo 07.11.2005
Autor: Dine88

Also irgendwie bin ich grad leicht verwirrt...
Wenn man den Hauptnenner bildet, muss man a  [mm] \* [/mm] a rechnen? Wieso das?
Und wie bringt man denn den Nenner nach oben?

Was ist bei dir das Endergebnis?

Sorry, aber ich hab das seit Jahren nicht gemacht.
Danke schonmal.

Bezug
                        
Bezug
Lineare Gleichung: Anderer Ansatz
Status: (Antwort) fertig Status 
Datum: 08:30 Di 08.11.2005
Autor: Loddar

Hallo Dine88,

[willkommenmr] !!


Nehemn wir mal einen anderen Ansatz. Erweitere diesen Doppelbruch doch mal mit $a_$ :

[mm] $\bruch{a-1}{a-\bruch{1}{a}} [/mm] \ = \ [mm] \bruch{(a-1)*\red{a}}{\left(a-\bruch{1}{a}\right)*\red{a}} [/mm] \ = \ [mm] \bruch{(a-1)*a}{a*a-\bruch{1}{a}*a} [/mm] \ = \ [mm] \bruch{(a-1)*a}{a^2-1}$ [/mm]


Nun wenden wir im Nenner die 3. binomische Formel an: [mm] $a^2-1 [/mm] \ = \ (a+1)*(a-1)$ und können anschließend kürzen:

$... \ = \ [mm] \bruch{\blue{(a-1)}*a}{(a+1)*\blue{(a-1)}} [/mm] \ = \ [mm] \bruch{a}{a+1}$ [/mm]

Fertig ... Die Lösung von Deinem Lehrer ist falsch.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]