Lineare Funktionen < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:06 So 27.09.2009 | Autor: | Krollll |
Aufgabe | 1. Gegeben ist eine Funktion f mit 4x + 2 + 2y = 0.
a) Wie lautet die Funktionsgleichung?
b) Zeichne f mithilfe eines Steigungsdreiecks
c) Berechne die Schnittpunkte mit der x- und der y-Achse!
d) Wie heißt die Parallele durch P (-1/4)
e) Wie lautet die Funktionsgleichung der Orthogonalen durch den Ursprung?
Eine zweite Gerade g geht durch A (4/-2) und B (-8/-5)
f) Wie lautet die Funktionsgleichung?
g) Liegt H(8/-1) auf dem Graph der Funktion?
h) Wo schneiden sich die Geraden g und f? |
Einige Aufgaben habe ich schon gelöst.
Diese sind es:
a) y= -2x -1
b) Zeichnung .. einfach einzeichnen. das hab ich ;)
c) mit der x-achse: S (-0,5 /0)
mit der y-achse: S (0 / -1)
d) Bedingung: m1 = m2
y= mx+b
4= -2 * (-1) +b | -b
4-b = -2 * (-1) | +4
b= 6
y= -2x + 6
-------------------------------------
e) Verstehe ich nicht!
orthogonal bedeutet: m1 = -1 / m2
y= 0,5x + b !?
f) m= y2-y1 / x2 - x1
m= -5 - (-2) / -8-4
m= -9,25
-2 = -9,25 * 4 + b | -b
-2-b = -37 | + (-2)
b= -39
y= -9,25x - 39
setze ich jedoch den Punkt A in die gleichung ein also
-2 = -9,25 * 4 - 39 kommt ein ungleiches ergebnis raus, obwohl es doch gleich sein muss?!
g) ist ebenso durch einsetzen ungleich!
f) -9,25x -39 = -2x-1
und wie weiter?! man muss ja zum schnittpunkt berechnen beide gleichungen gleichstezen und nach x auflösen.
Ich wäre sehr dankbar wenn ich die wege mit lösungen nachvollziehen kann, daich morgen schon die mathearbeit schreibe und vorher leider leider keine zeit zum lernen hatte. :-(
DANKE!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:14 So 27.09.2009 | Autor: | abakus |
> 1. Gegeben ist eine Funktion f mit 4x + 2 + 2y = 0.
> a) Wie lautet die Funktionsgleichung?
> b) Zeichne f mithilfe eines Steigungsdreiecks
> c) Berechne die Schnittpunkte mit der x- und der y-Achse!
> d) Wie heißt die Parallele durch P (-1/4)
> e) Wie lautet die Funktionsgleichung der Orthogonalen
> durch den Ursprung?
>
> Eine zweite Gerade g geht durch A (4/-2) und B (-8/-5)
> f) Wie lautet die Funktionsgleichung?
> g) Liegt H(8/-1) auf dem Graph der Funktion?
> h) Wo schneiden sich die Geraden g und f?
> Einige Aufgaben habe ich schon gelöst.
> Diese sind es:
> a) y= -2x -1
>
> b) Zeichnung .. einfach einzeichnen. das hab ich ;)
>
> c) mit der x-achse: S (-0,5 /0)
> mit der y-achse: S (0 / -1)
>
> d) Bedingung: m1 = m2
> y= mx+b
> 4= -2 * (-1) +b | -b
> 4-b = -2 * (-1) | +4
> b= 6
> y= -2x + 6
>
> -------------------------------------
> e) Verstehe ich nicht!
> orthogonal bedeutet: m1 = -1 / m2
> y= 0,5x + b !?
Hallo,
eine Ursprungsgerade hat die Form y=m*x (ohne ein "+ b")!
>
> f) m= y2-y1 / x2 - x1
> m= -5 - (-2) / -8-4
> m= -9,25
Während sich x um 12 Einheiten ändert, ändert sich y um 3 Einheiten. Der Betrag des Anstiegs ist also 3/12=1/4. (Ob + oder - musst du selbst schauen).
Gruß Abakus
>
> -2 = -9,25 * 4 + b | -b
> -2-b = -37 | + (-2)
> b= -39
>
> y= -9,25x - 39
>
> setze ich jedoch den Punkt A in die gleichung ein also
> -2 = -9,25 * 4 - 39 kommt ein ungleiches ergebnis raus,
> obwohl es doch gleich sein muss?!
>
> g) ist ebenso durch einsetzen ungleich!
>
> f) -9,25x -39 = -2x-1
> und wie weiter?! man muss ja zum schnittpunkt berechnen
> beide gleichungen gleichstezen und nach x auflösen.
>
>
>
> Ich wäre sehr dankbar wenn ich die wege mit lösungen
> nachvollziehen kann, daich morgen schon die mathearbeit
> schreibe und vorher leider leider keine zeit zum lernen
> hatte. :-(
> DANKE!
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:26 So 27.09.2009 | Autor: | Krollll |
Ich verstehe gerade gar nicht worauf sich dein zweiter Abschnitt des Beitrags bezieht?!
könntest du mir zu der aufgabe eine lösung schreiben, damit ich sie nachvollziehen kann?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:40 So 27.09.2009 | Autor: | leduart |
Hallo
du hast einfach (y2-y1)/(x2-x1) falsch ausgerechnet, der 2 te Teil gibt dir die richtige Gleichung.
Danach musst du auch den Rest neu rechnen.
Gruss leduart
|
|
|
|