www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Lineare Differentialgleichung
Lineare Differentialgleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Differentialgleichung: allgemeine Lösung bestimmen
Status: (Frage) beantwortet Status 
Datum: 21:11 Mo 12.07.2010
Autor: fabe_sen

Aufgabe
Bestimmen sie die allgemeinen Lösung der linearen Differentialgleichung

y' +2x = 3x

Ist dieser Lösungsweg richtig?

y' +2x = 3x

[mm] \Rightarrow \bruch{dy}{dx}+2x [/mm] = 3x

[mm] \Rightarrow \integral_{}^{}{2y dy} [/mm]  = [mm] \integral_{}^{}{3x dx} [/mm]
[mm] \Rightarrow [/mm] y² = x³ +C
[mm] \Rightarrow [/mm] y = [mm] \wurzel[]{x³+C} [/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lineare Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Mo 12.07.2010
Autor: etoxxl


> Bestimmen sie die allgemeinen Lösung der linearen
> Differentialgleichung
>  
> y' +2x = 3x
>  Ist dieser Lösungsweg richtig?
>  
> y' +2x = 3x
>  
> [mm]\Rightarrow \bruch{dy}{dx}+2x[/mm] = 3x
>  
> [mm]\Rightarrow \integral_{}^{}{2y dy}[/mm]  = [mm]\integral_{}^{}{3x dx}[/mm]
>  
> [mm]\Rightarrow[/mm] y² = x³ +C
>  [mm]\Rightarrow[/mm] y = [mm]\wurzel[]{x³+C}[/mm]
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Falls du dich mit der Aufgabenstellung nicht vertan hast,
ist es doch ganz einfach:
y' +2x = 3x (=) y' = x
Integriere auf beiden Seiten und es ergebit sich y= 0.5 [mm] x^2 [/mm]

Bezug
                
Bezug
Lineare Differentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:33 Mo 12.07.2010
Autor: fabe_sen

Nein, habe mich nicht vertan. Die Aufgabenstellung ist vom Typ: " Differentialgleichungen mit trennbaren Variablen"

Dabei muss eine Differentialgleichung aus der Form:
y' = g(x)*h(y) in die
allgemeine Lösung:

[mm] \integral_{}^{}{\bruch{dy}{h(y)}}=\integral_{}^{}{g(x) dx+C} [/mm] aufgelöst werden.

Die Lösung ist noch explizit anzugeben für die y(0) = -1 gilt.


Bezug
                        
Bezug
Lineare Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:39 Mo 12.07.2010
Autor: etoxxl

Dann ist deine Lösung für die DGL: y' +2x = 3x  wie gesagt
y = 1/2 [mm] x^2 [/mm] +c
Für y(0)=-1
gilt dann c=-1
und damit y = 1/2 [mm] x^2 [/mm] -1

Test:
y' = x
y' +2x = x + 2x = 3x

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]