www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Lineare Algebra
Lineare Algebra < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 Di 14.11.2006
Autor: YogieBear

Welche der folgenden Eigenschaften von f ist äquivalent dazu, dass f surjektiv ist?

1. Für jedes y [mm] \in [/mm] Y hat das Urbild [mm] f^{-1} [/mm] (y) genau ein Element

2. Für jedes y [mm] \in [/mm] Y gilt  [mm] f^{-1} [/mm] (y)  [mm] \not= \emptyset [/mm]

3. Für [mm] y_{1} [/mm] , [mm] y_{2} \in [/mm] Y mit [mm] y_{1} \not= y_{2} [/mm] gilt [mm] f^{-1} [/mm] ( [mm] y_{1} [/mm] ) [mm] \not= f^{-1} [/mm] ( [mm] y_{2} [/mm] )

Kann mir jemand sagen welche dieser Eigenschaften richtig ist oder sind.

        
Bezug
Lineare Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Di 14.11.2006
Autor: Planlos

Also 3. ist es nicht.
Surjektiv heisst: [mm] \forall [/mm] y [mm] \in [/mm] Y [mm] \existsx \in [/mm] X : f(x) = y
Vielleicht kommste ja nun weiter.

Bezug
                
Bezug
Lineare Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:35 Di 14.11.2006
Autor: YogieBear

Aber die ersten beiden Eigenschaften sind korrekt oder?

Bezug
                        
Bezug
Lineare Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Di 14.11.2006
Autor: piet.t

Hallo,

[mm] f:\IR\to\{1\}, [/mm]  x [mm] \mapsto [/mm] 1 ist sicher surjektiv, aber gilt da 1.?

Gruß

piet

Bezug
                                
Bezug
Lineare Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:46 Di 14.11.2006
Autor: YogieBear

Das zweite ist aber richtig? wenn das [mm] \not= \emptyset [/mm] ist f surjektiv stimmts? danke für die hilfe

Bezug
                                        
Bezug
Lineare Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 21:51 Di 14.11.2006
Autor: piet.t

Ja, das müsste man jetzt nur noch sauber begründen, aber dazu müsste man eure genaue Definition von "surjektiv" kennen.
Übrigens habe ich mir 3. nochmal angeschaut, und je länger ich darüber nachdenke desto mehr meine ich, dass das auch richtig ist:
Wie viele gemeinsame Elemente können denn [mm] f^{-1}(y_1) [/mm] und [mm] f^{-1}(y_2) [/mm] haben, wenn [mm] y_1\not=y_2 [/mm] ? Und wann können sie dann nur gleich sein?

edit: ...und noch genauer nachgedacht ist 3. doch wieder nicht äquivalent zu surjektiv, allerdings ist der Unterschied nur sehr klein - vielleicht findest Du es ja raus ;-)

Gruß

piet

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]