www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Lineare Abhängigkeit in R[x]
Lineare Abhängigkeit in R[x] < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abhängigkeit in R[x]: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 17:08 Fr 07.12.2012
Autor: qetu

Aufgabe
Es sei $ n [mm] \in \IN$, [/mm] $a [mm] \in \IR$. [/mm] Wie betrachten den reelen Vektorraum [mm] $\IR[x]$. [/mm] Sind die folgende Polynome linear abhängig?

$1, (x-a), [mm] \frac{1}{2}(x-a)^2, [/mm] ... [mm] \frac{1}{n!}(x-a)^n [/mm] $

Hallo liebe Freunde der Mathematik,

die Aufgabe kommt mir (zu) offensichtlich vor, sodass ich lieber mal nachfrage:

Wenn ich eine Linearkombination dieser Polynome bilde um damit das Nullpolynom darzustellen, dann kann ich das Polynom mit Grad n durch keine der anderen Polynome ausdrücken. Ich muss also das Skalar 0 für dieses Polynom wählen.

Dann erhalte ich ein Polynom vom Grad n-1. Wiederum kann ich dieses durch kein anderes Polynom darstellen -> entsprechendes Skalar = 0, usw. usf.

Also sind die Polynome linear unabhängig.

Stimmt meine Überlegung oder bin ich auf der falschen Spur???

Bringt es mir für die Argumentation irgendetwas, dass das linke Polynom immer die Ableitung des rechts danebenstehenden Polynoms ist (also $1$ ist Ableitung von $x-a$, $x-a$ ist Ableitung von $1/2 [mm] (x-a)^2$ [/mm] usw).

Vielen Dank für eure Hilfe!

        
Bezug
Lineare Abhängigkeit in R[x]: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Fr 07.12.2012
Autor: leduart

Hallo
du hast recht, was du machst ist eine Induktion von oben nach unten, vielleicht ist es besser von unten anzufangen.
das andere argument ist, dass ein Polynom n ten Grades höchstens n nullstellen hat,die summe  p aber für alle x 0 sein muss. d.h. es gibt keine Linearkombination ausser der trivialen, die die 0 erzeugt.
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]