www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Lineare Abhängigkeit bestimmen
Lineare Abhängigkeit bestimmen < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abhängigkeit bestimmen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:29 So 18.11.2007
Autor: master200

Aufgabe
Bestimmen Sie alle a [mm] \in \IR, [/mm] für die die Vektoren [mm] \vektor{1 \\ 0 \\ a \\ 1}, \vektor{1 \\ 1 \\ 0 \\ a}, \vektor{1 \\ -1 \\ 2a \\ 0} [/mm] des [mm] \IR^4 [/mm] linear abhängig sind.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hi,
hier mal mein bisheriger Lösungsansatz:
Vektoren sind linear abhängig wenn sich einer als Linearkombination der anderen darstellen lässt.

Also:
[mm] \vektor{1 \\ 0 \\ a \\ 1} [/mm] = [mm] \lambda [/mm] * [mm] \vektor{1 \\ 1 \\ 0 \\ a} [/mm] + [mm] \mu [/mm] * [mm] \vektor{1 \\ -1 \\ 2a \\ 0} [/mm]

Daraus lässt sich das folgende Gleichungssystem erstellen:
[mm] \lambda [/mm] + [mm] \mu [/mm] = 1
[mm] \lambda [/mm] - [mm] \mu [/mm] = 0
2a * [mm] \mu [/mm] = a
a * [mm] \lambda [/mm] = 1

Wenn ich jetzt die ersten beiden Addiere erhalte ich folgendes:
[mm] \lambda [/mm] + [mm] \mu [/mm] = 1
[mm] \lambda [/mm] - [mm] \mu [/mm] = 0
2 [mm] \lambda [/mm] = 1 [mm] \Rightarrow \lambda [/mm] = [mm] \bruch{1}{2} [/mm]

Setze ich dies nun in die letzte Gleichung ein erhalte ich:
1 = a * [mm] \bruch{1}{2} \Rightarrow [/mm] a=2

Setzte ich dies jetzt noch zu Kontrolle in die 3 Gleichung ein erhalte ich für [mm] \mu [/mm] einen Wert von [mm] \bruch{1}{2}. [/mm]

Ich gehe mal davon aus, dass ich eine Lösung gefunden habe.

Aber gibt es wirklich nur  eine oder habe ich einen Denkfehler.

Schon mal vielen Dank für eure Antworten !


        
Bezug
Lineare Abhängigkeit bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:35 So 18.11.2007
Autor: max3000

Ja.

Es gibt nur diesen einen.

Bezug
        
Bezug
Lineare Abhängigkeit bestimmen: Gegenfrage
Status: (Antwort) fertig Status 
Datum: 13:49 So 18.11.2007
Autor: Loddar

Hallo master200,

[willkommenmr] !!


Ich muss da etwas widersprechen! Zum einen solltest Du die Lineare Abhängigkeit über folgenden Ansatz zeigen:

[mm] $$\kappa*\vektor{1 \\ 0 \\ a \\ 1}+\lambda*\vektor{1 \\ 1 \\ 0 \\ a}+\mu*\vektor{1 \\ -1 \\ 2a \\ 0} [/mm] \ = \ [mm] \vektor{0\\0\\0\\0}$$ [/mm]

Und mal als Gegenfrage: betrachte doch mal den Sonderfall $a \ = \ 0$ . Was erhältst Du?


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]