www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Lineare Abhängigkeit
Lineare Abhängigkeit < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abhängigkeit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:52 Mi 21.11.2007
Autor: borych

Aufgabe
Es seien zwei Vektoren des Standardraums [mm] (K^{2}, [/mm] K, [mm] \*) [/mm] mit Komponenten a, b, c, d € K gegeben. Zeigen Sie die folgende Äquivalenz:

ad-bc ist nicht die Null aus K [mm] \gdw \vektor{a \\ c} [/mm] , [mm] \vektor{b \\ d} [/mm] sind K-linear unabhängig

Hallo,

Ich komme bei dieser Aufgabe nicht weiter. Könnt ihr mir ein paar Hilfestellungen geben?

Danke im Voraus
Gruß

        
Bezug
Lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:16 Mi 21.11.2007
Autor: angela.h.b.


> Es seien zwei Vektoren des Standardraums [mm](K^{2},[/mm] K, [mm]\*)[/mm] mit
> Komponenten a, b, c, d € K gegeben. Zeigen Sie die folgende
> Äquivalenz:
>  
> ad-bc ist nicht die Null aus K [mm]\gdw \vektor{a \\ c}[/mm] ,
> [mm]\vektor{b \\ d}[/mm] sind K-linear unabhängig
>  Hallo,
>  
> Ich komme bei dieser Aufgabe nicht weiter. Könnt ihr mir
> ein paar Hilfestellungen geben?

Hallo,

es wäre sehr hilfreich, hättest Du ein paar Hilfestellungen gegeben, sprich: Lösungsansätze/-versuche.

So stochert man im Trüben und weiß überhaupt nicht, woran es scheitert und was bereits "dran" war, sieht man auch nicht.

Du solltest uns an Deinen Überlegungen und Fragen teilnehmen lassen.

Ein Tip:

Du könntest alternativ versuchen, die Kontraposition zu beweisen, das scheint mir etwas einfacher zu sein, also

ad-bc=0   <==> [mm] \vektor{a \\ c}, \vektor{b \\ d} [/mm] sind linear abhängig.

Falls Ihr lineare GS und Determinanten besprochen habt, kannst Du das auch gut verwenden.

Gruß v. Angela



Bezug
                
Bezug
Lineare Abhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 Mi 21.11.2007
Autor: borych

erstma danke wiedermal für die schnelle reaktion.
Ich hätte gern einen Teilrechenweg hingeschrieben, doch hat dieser mir bei der Aufgabe komplett gefehlt.
Meinst du das es reicht, wenn ich nur die rückrichtung mache? Bei einer Äquivalenz muss man doch immer hin - und rückrichtung beweisen oder nicht?

gruß

Bezug
                        
Bezug
Lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:45 Do 22.11.2007
Autor: angela.h.b.


> erstma danke wiedermal für die schnelle reaktion.
>  Ich hätte gern einen Teilrechenweg hingeschrieben, doch
> hat dieser mir bei der Aufgabe komplett gefehlt.
> Meinst du das es reicht, wenn ich nur die rückrichtung
> mache? Bei einer Äquivalenz muss man doch immer hin - und
> rückrichtung beweisen oder nicht?

Hallo,

natürlich, wenn da steht, daß Äquivalenz zu zeigen ist, ist Äquivalenz zu zeigen und nicht nur eine Richtung.

Das schließt aber überhaupt nicht aus, daß man erstmal mit einer der beiden Richtungen anfängt.
Und solange Du nicht irgendwas tust, kann man Dir auch schlecht weiterhelfen.

Ich weiß ja noch nichteinmal, ob Du weißt, was lineare Abhängigkeit beideutet.

Formulier doch erstmal, was für eine v. Dir ausgewählte Richtung zu zeigen ist.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]