www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Lineare Abhängigkeit
Lineare Abhängigkeit < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abhängigkeit: Erklärung
Status: (Frage) beantwortet Status 
Datum: 19:17 Sa 07.04.2018
Autor: Mathilda1

Aufgabe
Was kann man über die lineare Abhängigkeit des Summenvektors und des Differenzenvektors zweier linear unabhängiger Vektoren aussagen?

Bei dieser Aufgabe kenne ich die Lösung:
Vektoren sind linear unabhängig
Allerdings verstehe ich nicht, warum dies so ist.

        
Bezug
Lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 Sa 07.04.2018
Autor: angela.h.b.

Hallo,

rechnerisch sieht man es so:

wenn [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] linear unabhängig sind,
folgt aus [mm] r\vec{a}+s\vec{b}=\vec{0}, [/mm] daß r=s=0.

Sei nun
[mm] \vec{u}=\vec{a}+\vec{b}, [/mm]
[mm] \vec{v}=\vec{a}-\vec{b}, [/mm]

und sei
[mm] k\vec{u}+l\vec{v}=\vec{0}. [/mm]

Wenn hieraus nun zwingend folgt, daß k=l=0, dann sind die beiden Vektoren linear unabhängig.
Schauen wir mal nach:

[mm] k\vec{u}+l\vec{v}=\vec{0} [/mm]
<==>
[mm] (k+l)\vec{a}+(k-l)\vec{b}=\vec{0}. [/mm]

Da [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] nach Voraussetzung linear unabhängig sind, folgt k+l=0 und k-l=0,
und hieraus k=l=0.
Also sind [mm] \vec{u} [/mm] und [mm] \vec{v} [/mm] linear unabhängig.


Zeichnerisch/anschaulich:
in dem von [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] aufgespannten Parallelogramm sind der Summen- und Differensvektor die beiden Diagonalen, welche offenbar keine Vielfachen voneinander sind.

LG Angela

Bezug
                
Bezug
Lineare Abhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:47 Sa 07.04.2018
Autor: Al-Chwarizmi


> Zeichnerisch/anschaulich:

> in dem von [mm]\vec{a}[/mm] und [mm]\vec{b}[/mm] aufgespannten
> Parallelogramm sind der Summen- und Differensvektor die
> beiden Diagonalen, welche offenbar keine Vielfachen
> voneinander sind.


Damit man wirklich ein "echtes" Parallelogramm (mit positiven
Seitenlängen und positivem Flächeninhalt) erhält, ist natürlich
die Voraussetzung wichtig, dass weder [mm] $\vec{a}$ [/mm] noch [mm] $\vec{b}$ [/mm] etwa der Null-
vektor sein könnte. Aber auch dies folgt natürlich aus der
vorausgesetzten Unabhängigkeit von [mm] $\vec{a}$ [/mm] und [mm] $\vec{b}$ [/mm] .
Ich wollte dies nur zur Präzisierung erwähnen.

LG ,   Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]