www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Lineare Abbildungen
Lineare Abbildungen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:22 Mo 02.11.2009
Autor: ms2008de

Aufgabe
Sei [mm] \alpha: \IQ^4 \to \IQ^4 [/mm] die durch [mm] \alpha \vektor{x_{1} \\ x_{2} \\ x_{3} \\ x_{4}} [/mm] = [mm] \vektor{x_{1}+x_{2}+x_{3}+x_{4} \\ x_{1}-x_{2}-x_{3}+x_{4} \\ x_{1}+x_{4} \\ 3x_{1}-x_{2}-x_{3}+3x_{4}} [/mm] definierte Abbildung.
Berechnen Sie eine Basis von [mm] Kern(\alpha) [/mm]

Hallo,
Also zu allererst hab ich die Darstellungsmatrix bezüglich der Standardbasis aufgestellt: A:= [mm] \pmat{ 1 & 1 & 1 & 1 \\ 1 & -1 & -1 &1 \\ 1 & 0 & 0 & 1 \\ 3 & -1 & -1 & 3}. [/mm]
Nun mussich ja as Gleichungssystem Ax=0 lösen, dazu hab ich elementare Zeilenumformung betrieben und kam somit auf die Matrix: [mm] \pmat{ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 &0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0}. [/mm]
Hieraus folgt ja nun, dass [mm] x_{2}=-x_{3} [/mm] und [mm] x_{1}=-x_{4}, [/mm] aber wie lese ich nun hieraus die Basis des Kerns ab?
B= [mm] \{\vektor{1 \\ 1 \\ 1 \\ 3}, \vektor{1 \\ -1 \\ 0 \\ -1}\} [/mm] müsste ja dann die des Bildes sein...?

Wäre um jede Hilfe dankbar.

Viele Grüße

        
Bezug
Lineare Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:35 Mo 02.11.2009
Autor: angela.h.b.


> Sei [mm]\alpha: \IQ^4 \to \IQ^4[/mm] die durch [mm]\alpha \vektor{x_{1} \\ x_{2} \\ x_{3} \\ x_{4}}[/mm]
> = [mm]\vektor{x_{1}+x_{2}+x_{3}+x_{4} \\ x_{1}-x_{2}-x_{3}+x_{4} \\ x_{1}+x_{4} \\ 3x_{1}-x_{2}-x_{3}+3x_{4}}[/mm]
> definierte Abbildung.
>  Berechnen Sie eine Basis von [mm]Kern(\alpha)[/mm]
>  Hallo,
>  Also zu allererst hab ich die Darstellungsmatrix
> bezüglich der Standardbasis aufgestellt: A:= [mm]\pmat{ 1 & 1 & 1 & 1 \\ 1 & -1 & -1 &1 \\ 1 & 0 & 0 & 1 \\ 3 & -1 & -1 & 3}.[/mm]
>  
> Nun mussich ja as Gleichungssystem Ax=0 lösen, dazu hab
> ich elementare Zeilenumformung betrieben und kam somit auf
> die Matrix: [mm]\pmat{ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 &0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0}.[/mm]

--> [mm] \pmat{ 1 & 0 &0 & 1 \\ 0 & 1 & 1 &0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0} [/mm]

>  
> Hieraus folgt ja nun, dass [mm]x_{2}=-x_{3}[/mm] und [mm]x_{1}=-x_{4},[/mm]
> aber wie lese ich nun hieraus die Basis des Kerns ab?

Hallo,

Du hast sie fast.

Du hast herausgefunden, daß die Lösungen [mm] \vektor{x_1\\x_2\\x_3\\x_4} [/mm] die Gestalt

[mm] \vektor{x_1\\x_2\\x_3\\x_4}=\vektor{-x_4\\-x_3\\\x_3\\x_4}=x_4*\vektor{-1\\0\\0\\1} [/mm] + [mm] x_3\vektor{0\\-1\\1\\0} [/mm] haben,
also eine Linearkombination die Vektoren [mm] \vektor{-1\\0\\0\\1} [/mm] und [mm] \vektor{0\\-1\\1\\0} [/mm] sind, welche aufgrund ihrer Unabhängigkeit eine Basis des Kerns bilden.


>  B= [mm]\{\vektor{1 \\ 1 \\ 1 \\ 3}, \vektor{1 \\ -1 \\ 0 \\ -1}\}[/mm]
> müsste ja dann die des Bildes sein...?

Ja.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]