www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Lineare Abbildungen
Lineare Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildungen: Frage & Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:36 Mo 26.12.2005
Autor: Raingirl87

Aufgabe
Welche der folgenden Abbildungen sind linear? Begründen sie ihre Antwort!
(a) A : [mm] \IR^{3} \to \IR^{2} [/mm] , A(x,y,z) = (x+2y,y-z)
(b) B : [mm] \IR^{3} \to \IR^{2} [/mm] , B(x,y,z) = (x+y,z+1)
(c) C : [mm] \IR^{3} \to \IR^{2} [/mm] , C(x,y,z) = (x+yz,z)
(d) D : [mm] \IC \to \IC [/mm] , D(z) = [mm] \neg [/mm] z (Betrachten sie die Fälle K = [mm] \IC [/mm] und K = [mm] \IR [/mm] getrennt.)

Wie finde ich denn heraus, ob eine Abbildung linear ist bzw. was muss ich da rechnen?
Ich komme mit der Aufgabe absolut nicht zurecht...
Wäre supi, wenn mir da jemand helfen könnte.
Danke schonmal!



        
Bezug
Lineare Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 03:56 Di 27.12.2005
Autor: Bastiane

Hallo!

> Welche der folgenden Abbildungen sind linear? Begründen sie
> ihre Antwort!
>  (a) A : [mm]\IR^{3} \to \IR^{2}[/mm] , A(x,y,z) = (x+2y,y-z)
>  (b) B : [mm]\IR^{3} \to \IR^{2}[/mm] , B(x,y,z) = (x+y,z+1)
>  (c) C : [mm]\IR^{3} \to \IR^{2}[/mm] , C(x,y,z) = (x+yz,z)
>  (d) D : [mm]\IC \to \IC[/mm] , D(z) = [mm]\neg[/mm] z (Betrachten sie die
> Fälle K = [mm]\IC[/mm] und K = [mm]\IR[/mm] getrennt.)
>  Wie finde ich denn heraus, ob eine Abbildung linear ist
> bzw. was muss ich da rechnen?
>  Ich komme mit der Aufgabe absolut nicht zurecht...
>  Wäre supi, wenn mir da jemand helfen könnte.
>  Danke schonmal!

Wie wär's denn mal mit Nachschlagen in einem Buch oder in der Vorlesungsmitschrift? ;-) Also, eine Abbildung f ist linear, wenn folgendes gilt:

$f(x+y)=f(x)+f(y)$

also in Worten: Das Bild der Summe zweier Argumente ist gleich der Summe der Bilder dieser beiden Argumente

und

[mm] f(\lambda*x)=\lambda*f(x) [/mm] mit [mm] \lambda [/mm] aus dem Körper

Du musst also diese beiden Eigenschaften überprüfen. :-) Kleiner Tipp: falls eine der beiden Eigenschaften nicht gilt, brauchst du die andere nicht mehr zu überprüfen und es reicht, als Beweis ein Gegenbeispiel anzugeben.

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
Lineare Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:11 Di 27.12.2005
Autor: mathiash

Hallo zusammen,

noch was dazu: wenn zB   [mm] f_i\colon K^n\to [/mm] K , [mm] 1\leq i\leq [/mm] m Abbildungen sind (K ein Koerper), dann ist

[mm] f\colon K^n\to K^m [/mm] mit [mm] f(v)=(f_1(v),.....f_m(v)) [/mm]

linear genau dann, wenn alle [mm] f_i [/mm] linear sind.

Ebenso:

Wenn  V und W zwei Vektorr"aume ueber K sind und [mm] f,g\colon V\to [/mm] W linear, so sind auch alle Abb. [mm] h\colon V\to [/mm] W,

h(v) = [mm] a\cdot [/mm] f(v)  + [mm] b\cdot [/mm] g(v)     [mm] (a,b\in [/mm] K)    linear.

Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]