www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Lineare Abbildung prüfen
Lineare Abbildung prüfen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildung prüfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:55 Fr 06.12.2013
Autor: Kartoffelchen

Aufgabe
Untersuche auf Linearität:

1.) $ [mm] R^R \to [/mm] R, f -> f(1) $
2.) $ [mm] R^n \to [/mm] R, [mm] (x_n)_{n \in N} [/mm] -> [mm] lim_{n\to\infty} x_n [/mm] $

So,

1)

Seien [mm] $k_1, k_2 \in \mathbb{R}$ [/mm] und $ [mm] (x_1, y_1), (x_2, y_2) \in \mathbb{R}^R [/mm] $.
Die Abbildung sei mit F bezeichnet:

$ F [mm] (k_1f_1 [/mm] + [mm] k_2f_2) [/mm] = [mm] (k_1f_1 [/mm] + [mm] k_2f_2)(1) [/mm] = [mm] (k_1f_1)(1) [/mm] + [mm] (k_2f_2)(1) [/mm] = [mm] k_1 \cdot f_1(1) [/mm] + [mm] k_2 \cdot f_2(1) [/mm] = [mm] k_1 \cdot F(f_1) [/mm] + [mm] k_2 \cdot F(f_2) [/mm] $.

Damit ist die Linearität gezeigt.

2)

Hier weiß ich nicht, was ich tun soll

        
Bezug
Lineare Abbildung prüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:06 Fr 06.12.2013
Autor: fred97


> Untersuche auf Linearität:
>  
> 1.) [mm]R^R \to R, f -> f(1)[/mm]
>  2.) [mm]R^n \to R, (x_n)_{n \in N} -> lim_{n\to\infty} x_n[/mm]


Da steht sicher nicht [mm] R^n, [/mm] sondern [mm] R^{\IN}, [/mm] und das ist die Menge aller Folgen in [mm] \IR. [/mm]

Aufgabe 2) ist aber völlig sinnlos. So wie es da oben steht, wird jeder reellen Folge ihr Grenzwert zugeordnet ! Das ist aber Schmarrn, denn es gibt  viel divergente Folgen.

>  
> So,
>
> 1)
>  
> Seien [mm]k_1, k_2 \in \mathbb{R}[/mm]



> und [mm](x_1, y_1), (x_2, y_2) \in \mathbb{R}^R [/mm].

Du meinst sicher [mm] $f_1,f_2 \in \mathbb{R}^R [/mm] $

> Die Abbildung sei mit F bezeichnet:
>  
> [mm]F (k_1f_1 + k_2f_2) = (k_1f_1 + k_2f_2)(1) = (k_1f_1)(1) + (k_2f_2)(1) = k_1 \cdot f_1(1) + k_2 \cdot f_2(1) = k_1 \cdot F(f_1) + k_2 \cdot F(f_2) [/mm].
>  
> Damit ist die Linearität gezeigt.

Ja.


>  
> 2)
>  
> Hier weiß ich nicht, was ich tun soll  

Tja, entweder hat der Aufgabensteller einen Dachschaden oder Du hast die Aufgabe nicht korrekt und vollständig wiedergegeben.

FRED

Bezug
                
Bezug
Lineare Abbildung prüfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:35 Fr 06.12.2013
Autor: Kartoffelchen

Korrekt & Danke.

Aufgabe Nr. 2 lautet tatsächlich so, (abgesehen davon, dass es [mm] $\mathbb{N}$ [/mm] statt N sein muss).

Mh..

Bezug
                        
Bezug
Lineare Abbildung prüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 Fr 06.12.2013
Autor: fred97


> Korrekt & Danke.
>  
> Aufgabe Nr. 2 lautet tatsächlich so,

Dann hat der Aufgabensteller einen Dachschaden

FRED

>  (abgesehen davon,
> dass es [mm]\mathbb{N}[/mm] statt N sein muss).
>  
> Mh..


Bezug
                                
Bezug
Lineare Abbildung prüfen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:46 Fr 06.12.2013
Autor: Richie1401


> > Korrekt & Danke.
>  >  
> > Aufgabe Nr. 2 lautet tatsächlich so,
>  
> Dann hat der Aufgabensteller einen Dachschaden

Xaver lässt grüßen...


Schönen 2. Advent.

>  
> FRED
>  
> >  (abgesehen davon,

> > dass es [mm]\mathbb{N}[/mm] statt N sein muss).
>  >  
> > Mh..
>  


Bezug
                                        
Bezug
Lineare Abbildung prüfen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:55 Fr 06.12.2013
Autor: fred97


> > > Korrekt & Danke.
>  >  >  
> > > Aufgabe Nr. 2 lautet tatsächlich so,
>  >  
> > Dann hat der Aufgabensteller einen Dachschaden
>  Xaver lässt grüßen...

Hallo Richeie,

Xaver hat doch was Gutes:

Je größer der Dachschaden, um so besser ist der Blick in die Sterne. Und manche Leute sehen die komplette Galaxis...


>  
>
> Schönen 2. Advent.

Wünsche ich Dir auch.

Gruß FRED

>  >  
> > FRED
>  >  
> > >  (abgesehen davon,

> > > dass es [mm]\mathbb{N}[/mm] statt N sein muss).
>  >  >  
> > > Mh..
> >  

>  


Bezug
                                                
Bezug
Lineare Abbildung prüfen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:56 Fr 06.12.2013
Autor: Kartoffelchen

Herzlichen Dank! (Ich wünsche auch einen schönen zweiten Advent)

Das mit dem Dachschaden werden ich dem Aufgabensteller aber lieber nicht sagen. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]