www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Lineare Abbildung bestimmen
Lineare Abbildung bestimmen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:26 Mi 02.06.2010
Autor: stk66

Aufgabe
Gibt es eine lineare Abbildung [mm] f:\IR^{2}\to\IR^{3} [/mm] mit [mm] f(\vektor{1 \\ 2}) [/mm] = [mm] \vektor{1 \\ 3 \\ 0}, f(\vektor{3 \\ 5}) [/mm] = [mm] \vektor{-1 \\ 0 \\ 2} [/mm] und [mm] f(\vektor{-1 \\ -1}) [/mm] = [mm] \vektor{4 \\ 0 \\ 3}? [/mm]

Ich denke eine solche Abbildung existiert nicht.
(i) [mm] f(\vektor{3 \\ 5})=\vektor{-1 \\ 0 \\ 2} [/mm]
(ii) [mm] f(\vektor{-1 \\ -1})=\vektor{4 \\ 0 \\ 3} [/mm]

Wegen (ii) müsste [mm] f(\vektor{x \\ y})=\vektor{\cdots \\ (x-y) oder (2x-2y) usw \\ \cdots} [/mm] sein.
Allerdings kann dann die Zuordnugsvorschrift nicht auch bei (i) gelten.

Kann ich so argumentieren?
Wie würde ich die lineare Abbildung finden, falls es eine gäbe?


        
Bezug
Lineare Abbildung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:35 Mi 02.06.2010
Autor: angela.h.b.


> Gibt es eine lineare Abbildung [mm]f:\IR^{2}\to\IR^{3}[/mm] mit
> [mm]f(\vektor{1 \\ 2})[/mm] = [mm]\vektor{1 \\ 3 \\ 0}, f(\vektor{3 \\ 5})[/mm]
> = [mm]\vektor{-1 \\ 0 \\ 2}[/mm] und [mm]f(\vektor{-1 \\ -1})[/mm] =
> [mm]\vektor{4 \\ 0 \\ 3}?[/mm]
>  Ich denke eine solche Abbildung
> existiert nicht.
>  (i) [mm]f(\vektor{3 \\ 5})=\vektor{-1 \\ 0 \\ 2}[/mm]
>  (ii)
> [mm]f(\vektor{-1 \\ -1})=\vektor{4 \\ 0 \\ 3}[/mm]
>  
> Wegen (ii) müsste [mm]f(\vektor{x \\ y})=\vektor{\cdots \\ (x-y) oder (2x-2y) usw \\ \cdots}[/mm]
> sein.

Hallo,

irgendwie bist Du auf dem völlig falschen Trip.

Wir haben es hier mit linearen Abbildungen zu tun.

Sie sind durch die Angabe ihrer Werte auf einer Basis eindeutig festgelegt. (Aufgrund der Linearität.)

Es kann

> [mm]f(\vektor{1 \\ 2})[/mm] = [mm]\vektor{1 \\ 3 \\ 0}, f(\vektor{3 \\ 5})[/mm] = [mm]\vektor{-1 \\ 0 \\ 2}[/mm]

überhaupt nicht "falsch" sein, denn [mm] \vektor{1\\2}, \vektor{3\\5} [/mm] ist eine Basis des [mm] \IR^2, [/mm] welcher man nach Lust und Laune Funktionswerte zuweisen kann.

Es kommt nun darauf an, ob

> [mm]f(\vektor{-1 \\ -1})[/mm] = [mm]\vektor{4 \\ 0 \\ 3}[/mm]

sich mit der geforderten Linearität von f verträgt.

Schreibe [mm] \vektor{-1 \\ -1} [/mm] als Linearkombination der beiden anderen Vektoren und schau (Linearität v. f) , ob der zugewiesene Funktionswert paßt.

Gruß v. Angela


Bezug
                
Bezug
Lineare Abbildung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:00 Mi 02.06.2010
Autor: stk66

Hoffe ich habe Dich richtig verstanden.

[mm] \vektor{-1 \\ -1} [/mm] = [mm] 2*\vektor{1 \\ 2}-\vektor{3 \\ 5} [/mm]

Muss dann also auch [mm] f(\vektor{-1 \\ -1}) [/mm] = [mm] 2*f(\vektor{1 \\ 2})-f(\vektor{3 \\ 5}) [/mm] sein damit eine lineare Abbildung f existiert?

Bezug
                        
Bezug
Lineare Abbildung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:05 Mi 02.06.2010
Autor: angela.h.b.


> Hoffe ich habe Dich richtig verstanden.
>  
> [mm]\vektor{-1 \\ -1}[/mm] = [mm]2*\vektor{1 \\ 2}-\vektor{3 \\ 5}[/mm]
>  
> Muss dann also auch [mm]f(\vektor{-1 \\ -1})[/mm] = [mm]2*f(\vektor{1 \\ 2})-f(\vektor{3 \\ 5})[/mm]
> sein damit eine lineare Abbildung f existiert?

Hallo,

ja, Du hast mich haargenau verstanden.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]