www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Lineare Abbildung (Bild/Kern)
Lineare Abbildung (Bild/Kern) < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildung (Bild/Kern): Bei Übungsaufgabe... komisch..
Status: (Frage) beantwortet Status 
Datum: 21:17 Mi 26.01.2005
Autor: Faenol

Hi !

Hab 'ne Übungsaufgabe im Internet gefunden:
Bild berechnen:
F: [mm] \IR^{3}->\IR^{3} [/mm]
F= [mm] \pmat{ 1 & -1 & 2 \\ -3 & 3 & 2 \\ 1 & -1 -6 } [/mm]

Ich komm da auf:

Kern(F)=< [mm] \vektor{1 \\ 1 \\ 0} [/mm] >
also dim(Kern)=1

und dann auch dim(Bild)=1. [mm] (<\vektor{2 \\ 1 \\ 1}> [/mm]

Aber es muss doch dim(Bild)+dim(Kern)=3 sein, in diesem Fall..

Ich seh hier meinen Fehler nicht... *verwirrt*

Faenôl

        
Bezug
Lineare Abbildung (Bild/Kern): Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 Mi 26.01.2005
Autor: andreas

hi

wenn du willst, dass wir deinen fehler suchen müsstets du schon die rechnung posten, deshalb mache ich jtzt nur mal eine kurze bemerkung, die sich dann vielleicht deinen fehler selber finden lässt?



> Hab 'ne Übungsaufgabe im Internet gefunden:
>  Bild berechnen:
>  F: [mm]\IR^{3}->\IR^{3} [/mm]
>  F= [mm]\pmat{ 1 & -1 & 2 \\ -3 & 3 & 2 \\ 1 & -1 -6 } [/mm]
>  
> Ich komm da auf:
>  
> Kern(F)=< [mm]\vektor{1 \\ 1 \\ 0}[/mm] >
>  also dim(Kern)=1
>  
> und dann auch dim(Bild)=1. [mm](<\vektor{2 \\ 1 \\ 1}> [/mm]
>  
> Aber es muss doch dim(Bild)+dim(Kern)=3 sein, in diesem
> Fall..

ja genau. das ist ein sehr gutes kriterium um zu überprüfen, ob man richtig gerechnet hat.

betrachte mal das bild des zweiten und dritten einheitsvektors, das ist: [m] \left( \begin{array}{c} -1 \\ 3 \\ -1 \end{array} \right) [/m] bzw. [m] \left( \begin{array}{c} 2 \\ 2 \\ -6 \end{array} \right) [/m] (wenn ich deine abbildungsmatrix richtig interpretiere?), also [m] \left<\left( \begin{array}{c} -1 \\ 3 \\ -1 \end{array} \right), \left( \begin{array}{c} 2 \\ 2 \\ -6 \end{array} \right) \right> \subseteq \textrm{bild} F [/m] und da die beiden vektoren offensichtlich linear unabhängig sind: [m] 2 \leq \dim \textrm{bild} F [/m]


> Ich seh hier meinen Fehler nicht... *verwirrt*

hoffe, ich konnte damit etwas gegen deine verwirrung tun.


grüße
andreas

Bezug
                
Bezug
Lineare Abbildung (Bild/Kern): Neue Frage
Status: (Frage) beantwortet Status 
Datum: 22:06 Mi 26.01.2005
Autor: Faenol

Hi !

Danke Andreas ! *g*

Nee, ich wollte nur genau, das was du gemacht hast, mir sagen, dass die dim vom Bild eigentlich 2 ist !

Ich dachte schon, unter irgendwelchen mysteriösen Umständen könnte man die Dimensionsformel im endlichen nicht benutzen,....... (würd mich zwar wundern, aber naja.. *g*).

Hab meinen Fehler gefunden, der sah so aus, dass ich irgendwie beim ganzen Rechnen heute, die transponierte Matrix auf Zeilenstufenform gebracht habe und dann da irgendwas versuchte zu rechnen, dabei hatte ich schon die Lösung........

Wobei eine Frage hätte ich da schon noch:

Ist es eigentlich richtig, dass man die Dimensionsformel (zum Abkürzen) nur anwenden kann, wenn z.B.
F: [mm] R^{4}->R^{3} [/mm] (V->W)
und sich nach Rechnen herausstellt dim(Kern)=1
Also dim(Bild)=3 sein müßte.
Was ja = dim(W) ist.
Dass man halt nur dann sagen, kann, ich wähle mir die kanonische Basis des [mm] R^{3}, [/mm] und berechne die Bilder ?

Oder gilt das immer, halt auch wenn dim(Kern) nicht gleich der Unterschied zwischen V und W ist ?

Irgendwie haben sich da unsere Tutoren mal drüber gestritten...

Faenôl

Bezug
                        
Bezug
Lineare Abbildung (Bild/Kern): Antwort
Status: (Antwort) fertig Status 
Datum: 14:18 Di 01.02.2005
Autor: SirJective

Hallo!

> Ist es eigentlich richtig, dass man die Dimensionsformel
> (zum Abkürzen) nur anwenden kann, wenn z.B.
>  F: [mm]R^{4}->R^{3}[/mm] (V->W)
>  und sich nach Rechnen herausstellt dim(Kern)=1
>  Also dim(Bild)=3 sein müßte.

Ja, wenn du weisst, dass dim(Kern)=1 ist, folgt daraus, dass dim(Bild)=3 ist.

>  Was ja = dim(W) ist.

Genau, in diesem Fall ist F also sogar eine surjektive Abbildung.

>  Dass man halt nur dann sagen, kann, ich wähle mir die
> kanonische Basis des [mm]R^{3},[/mm] und berechne die Bilder ?

Bild(F) ist hier der ganze [mm] R^3, [/mm] also kannst du z.B. die kanonische Basis des [mm] R^3 [/mm] als Basis des Bildes waehlen. Was meinst du mit "berechne die Bilder"?

> Oder gilt das immer, halt auch wenn dim(Kern) nicht gleich
> der Unterschied zwischen V und W ist ?

Ich verstehe nicht was du meinst.
Wenn dim(Kern) = dim(W) - dim(V) ist, dann ist notwendig dim(Bild) = dim(W) und F ist surjektiv, also Bild(F) = W. Kleiner kann dim(Kern) nicht sein, und wenn's groesser ist, dann ist Bild(F) eben ein echter Teilraum von W, mit dim(Bild)<dim(W).


Gruss,
SirJective


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]