www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Lineare Abbildung
Lineare Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:55 Sa 16.11.2013
Autor: Delia00

Aufgabe
Ein Quadrat mit den Koordinaten A(1 l 0), B(1 l 1), C(2 l -1), D(2 l 0)
wurde mithilfe einer Abbildungsmatrix auf die Punkte A', B', C' und D' abgebildet,
A'(2 l 1)
B'(3 l -1)
C'(5 l 0)
D'(4 l 2)

Bestimme die Abbildungsmatrix A

Hallo Zusammen,

ich weiß, dass ich ein lineares Gleichungssystem aufstellen muss.

Leider weiß ich nicht, wie ich da vorgehen muss.

        
Bezug
Lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:26 Sa 16.11.2013
Autor: Diophant

Hallo,

eine lineare Abbildung funktioniert für jeden Vektor so:

[mm] \vec{y}=A*\vec{x} [/mm]

Dabei ist A die Abbildungsmatrix und die Mutiplikation die Matrizenmultiplikation.

Wenn man hier nichts denkt, arbeitet man mit einer 3x3-Matrix und bekommt ein 9x9-LGS. Betrachte dir deshalb mal alle Punkte des Urbilds sowie des Bildes. Fällt dir die entscheidende Vereinfachungsmöglichkeit selbst auf?

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]