www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Lineare Abbildung
Lineare Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildung: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 01:23 Di 28.06.2011
Autor: mathestudent111

Aufgabe
g: [mm] K^{n,1} \to [/mm] K ,  x [mm] \to x^{T}Ax [/mm]

Ist g linear? Zeigen Sie, dass g=0 ist genau dann wenn A + [mm] A^T [/mm] = 0 gilt.

Hallo,

den Teil mit linear habe ich bereits gemacht. g ist nicht linear da,

f(kv) = [mm] (kv)^T [/mm] A(kv) = [mm] k^2 v^T [/mm] Av = [mm] k^2 [/mm] f(kv) [mm] \not= [/mm] k f(kv)
[mm] \forall [/mm] v [mm] \in [/mm] V
[mm] \forall [/mm] k [mm] \in [/mm] K

Ist das richtig?


Beim 2. Teil muss ich ja zeigen: g=0 [mm] \gdw [/mm] A + [mm] A^T [/mm] = 0
Ich habe irgendwie hier kein Ansatz... Könnt ihr mir da helfen?

Danke im Voraus.

        
Bezug
Lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:43 Di 28.06.2011
Autor: felixf

Moin!

> g: [mm]K^{n,1} \to[/mm] K ,  x [mm]\to x^{T}Ax[/mm]
>  
> Ist g linear? Zeigen Sie, dass g=0 ist genau dann wenn A +
> [mm]A^T[/mm] = 0 gilt.
>  Hallo,
>  
> den Teil mit linear habe ich bereits gemacht. g ist nicht
> linear da,
>  
> f(kv) = [mm](kv)^T[/mm] A(kv) = [mm]k^2 v^T[/mm] Av = [mm]k^2[/mm] f(kv) [mm]\not=[/mm] k
> f(kv)
>  [mm]\forall[/mm] v [mm]\in[/mm] V

Hier ist $V = [mm] K^{n,1}$? [/mm]

>  [mm]\forall[/mm] k [mm]\in[/mm] K
>  
> Ist das richtig?

Jain. Wenn fuer alle $k [mm] \in [/mm] K$ gilt [mm] $k^2 [/mm] = k$, dann ist das noch kein Widerspruch. (Wann ist dies der Fall? Was ist mit der Additivitaet in dem Fall?)

> Beim 2. Teil muss ich ja zeigen: g=0 [mm]\gdw[/mm] A + [mm]A^T[/mm] = 0
>  Ich habe irgendwie hier kein Ansatz... Könnt ihr mir da
> helfen?

Nun, versuch doch erstmal die eine Richtung. Angenommen, $A + [mm] A^T [/mm] = 0$. Schreibe erstmal mit $v = [mm] (v_1, \dots, v_n)$ [/mm] und $A = [mm] (a_{ij})_{ij}$ [/mm] den Wert $g(v)$ aus. Beachte, dass [mm] $v_i v_j [/mm] = [mm] v_j v_i$ [/mm] und nach Annahme [mm] $a_{ij} [/mm] + [mm] a_{ji} [/mm] = 0$ ist. Was bleibt uebrig?

Hier musst du den Fall beachten, dass in $K$ gelten kann $k = -k$ auch fuer Elemente [mm] $\neq [/mm] 0$! (Das ist aber nur in ganz bestimmten Koerpern der Fall.)

Fuer die andere Richtung schau dir Vektoren $v$ an, bei denen genau einer oder zwei Eintraege [mm] $\neq [/mm] 0$ sind. Berechne $g(v)$ fuer solche Vektoren.

LG Felix


Bezug
                
Bezug
Lineare Abbildung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:28 Do 30.06.2011
Autor: mathestudent111

So könnte ich doch anfangen....

(i) g(kv) = [mm] (kv)^T [/mm] A(kv) = [mm] k^2 v^T [/mm] Av = [mm] k^2 [/mm] f(kv) [mm] \not= [/mm] k g(kv)
[mm] \forall [/mm] v [mm] \in K^{n,1} [/mm]
[mm] \forall [/mm] k [mm] \in [/mm] K

Fallunterscheidung:
k [mm] \not= [/mm] -1 oder 0 oder 1 [mm] \Rightarrow [/mm] (möglich) linear,
sonst f n. linear


(ii) g(v+w) = [mm](v+w)^T[/mm] A (v+w) = [mm](v^T[/mm] + [mm]w^T)[/mm] A (v+w) = [mm](v^T[/mm] A + [mm]w^T[/mm] A)(v+w) =
[mm] v^T [/mm] A v + [mm] v^T [/mm] A w + [mm] w^T [/mm] A v + [mm] w^T [/mm] A w [mm]\not=[/mm] g(v) + g(w)

[mm] \Rightarrow v^T [/mm] (A + [mm] A^T) [/mm] w = [mm] v^T [/mm] A w + [mm] v^T A^T [/mm] w [mm] \not= [/mm] 0
(Aber warum folgt diese Gleichung???)


Bezug
                        
Bezug
Lineare Abbildung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Sa 02.07.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Lineare Abbildung: Idee und Rückfrage
Status: (Antwort) fertig Status 
Datum: 14:13 Di 28.06.2011
Autor: JulchenR.

Hallo,

ich hab nicht unbedingt viel Ahnung, aber ist die Aufgabe, wie du sie gemacht hast, nicht falsch? Dein v müsste doch in K n,1 sein? Du sagst v [mm] \in [/mm] V, aber hast V nicht in der Aufgabe zuvor auch nur erwähnt bzw definiert. Außerdem woher kommt bei dir f? Wir reden doch von einer Abbildung g!

Nach der Aufgabenstellung ist x [mm] \in [/mm] K n,1 . Um zu beweisen, dass g linear ist, muss man unter anderem zeigen, dass g(kx)=kg(x) ist. Wenn man beide Seiten umformt müsste das doch funktionieren:

g(kx)= kx T Ax

kg(x)=k(x T Ax)=kx T Ax

Oder verstehe ich das vollkommen falsch?



Bezug
                
Bezug
Lineare Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:23 Di 28.06.2011
Autor: fred97


> Hallo,
>  
> ich hab nicht unbedingt viel Ahnung, aber ist die Aufgabe,
> wie du sie gemacht hast, nicht falsch? Dein v müsste doch
> in K n,1 sein? Du sagst v [mm]\in[/mm] V, aber hast V
> nicht in der Aufgabe zuvor auch nur erwähnt bzw definiert.
> Außerdem woher kommt bei dir f? Wir reden doch von einer
> Abbildung g!
>  
> Nach der Aufgabenstellung ist x [mm]\in[/mm] K n,1 . Um
> zu beweisen, dass g linear ist, muss man unter anderem
> zeigen, dass g(kx)=kg(x) ist. Wenn man beide Seiten umformt
> müsste das doch funktionieren:
>  
> g(kx)= kx T Ax

Nein:   g(kx)=(kx) T A(kx)

FRED


>  
> kg(x)=k(x T Ax)=kx T Ax
>  
> Oder verstehe ich das vollkommen falsch?
>  
>  


Bezug
                        
Bezug
Lineare Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:49 Do 30.06.2011
Autor: mathestudent111

Okay. Ich fang nochmal von vorne an.

1.) z.z.: g(v+w)=g(v)+g(w) [mm] \forall [/mm] v,w [mm] \in K^{n,1} [/mm]

g(v+w) = [mm] (v+w)^T [/mm] A (v+w) = [mm] (v^T [/mm] + [mm] w^T) [/mm] A (v+w) = [mm] (v^T [/mm] A + [mm] w^T [/mm] A)(v+w) [mm] \not= [/mm] g(v) + g(w)

Ist somit dann g nicht linear, oder?



Bezug
                                
Bezug
Lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:57 Do 30.06.2011
Autor: fred97


> Okay. Ich fang nochmal von vorne an.
>  
> 1.) z.z.: g(v+w)=g(v)+g(w) [mm]\forall[/mm] v,w [mm]\in K^{n,1}[/mm]
>
> g(v+w) = [mm](v+w)^T[/mm] A (v+w) = [mm](v^T[/mm] + [mm]w^T)[/mm] A (v+w) = [mm](v^T[/mm] A +
> [mm]w^T[/mm] A)(v+w) [mm]\not=[/mm] g(v) + g(w)

Ja, und warum gilt [mm]\not=[/mm]  ???

FRED

>  
> Ist somit dann g nicht linear, oder?
>  
>  


Bezug
                                        
Bezug
Lineare Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:07 Do 30.06.2011
Autor: mathestudent111

g(v+w) = [mm](v+w)^T[/mm] A (v+w) = [mm](v^T[/mm] + [mm]w^T)[/mm] A (v+w) = [mm](v^T[/mm] A + [mm]w^T[/mm] A)(v+w) =
[mm] v^T [/mm] A v + [mm] v^T [/mm] A w + [mm] w^T [/mm] A v + [mm] w^T [/mm] A w [mm]\not=[/mm] g(v) + g(w)

Ist es so besser???

Bezug
                                                
Bezug
Lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:56 Do 30.06.2011
Autor: fred97

Ja

FRED

Bezug
                                                
Bezug
Lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:10 Do 30.06.2011
Autor: felixf

Moin!

> g(v+w) = [mm](v+w)^T[/mm] A (v+w) = [mm](v^T[/mm] + [mm]w^T)[/mm] A (v+w) = [mm](v^T[/mm] A +
> [mm]w^T[/mm] A)(v+w) =
> [mm]v^T[/mm] A v + [mm]v^T[/mm] A w + [mm]w^T[/mm] A v + [mm]w^T[/mm] A w [mm]\not=[/mm] g(v) + g(w)

Naja, Gleichheit kann trotzdem noch gelten! Etwa falls $A = 0$ ist. (Oder, wie in der Aufgabenstellung, $g = 0$ ist.)

Wenn du auf beiden Seiten $g(v)$ und $g(w)$ abziehst, bleibt die Ungleichung [mm] $v^T [/mm] A w + [mm] w^T [/mm] A v [mm] \neq [/mm] 0$ uebrig. Das ist aequivalent zu [mm] $v^T [/mm] (A + [mm] A^T) [/mm] w = [mm] v^T [/mm] A w + [mm] v^T A^T [/mm] w [mm] \neq [/mm] 0$.

Du musst jetzt zeigen, dass es gewisse $v, w$ gibt, so dass dies erfuellt ist (dann ist es nicht linear). Oder halt zeigen, dass es keine gibt (in dem Fall waer es additiv linear).

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]